Parameter vs. Statistic

How much sleep did AP Statistics students get last night?

- Parameter → number that describes population, usually unknown, usually given.
 - Symbols = mostly Greek letters
 - μ = mean, σ = standard deviation, p = proportion
 - Example: Average hours all AP Statistics students slept last night.
- Statistic → number computed from sample. Observed, known. Used to estimate parameter.
 - Symbols = mostly English letters
 - \overline{x} (x-bar) = mean, s = standard deviation, p (p-hat) = proportion
 - Example: Average hours my sampled students slept last night.

	Mean	Standard deviation	Proportion	Size
Statistics (sample)	X	S	þ	n
Parameter (population)	μ	σ	р	Ν

		67
	BIAS (mean) VS. VARIADIIITY (s.d.)	65
•	Bias \rightarrow Difference between center of sampling	61
	distribution and "true conter" of parameter	63.5
	distribution and true center of parameter	67
	 Example: Mean height of class, x=64.85 inches, and 	67
	true mean μ of heights of everyone.	61
		62
		75
•	Variability → Spread of sampling distribution	66
	$-$ Larger distribution \rightarrow smaller spreads.	72
	 Levels out when population (N) is 10+ times larger than 	63
	sample (n)	62
	— Example: Standard deviation of your heights, s =4.853,	56
	vs. true standard deviation o of heights of everyone.	70
		58
		67

4 of 12

Low variability

 <u>http://onlinestatbook.com/stat_sim/sampling</u> <u>dist/index.html</u>

The Central Limit Theorem

7 of 12

- Foundation of inferential statistics (rest of course)
- Sampling distribution:
 - "The distribution of values of the statistic in <u>all</u>
 <u>possible</u> samples of size *n* from the population."

"For <u>any</u> population, when n is large enough, the sampling distribution is approximately normal."

Conditions (prop.)

ndependent s

/lath:	N ≥ 10n
Vords:	Population (N) is 10+ times
	bigger than sample (n).
ummary:	"Sample is just a small slice."

Math:	np ≥ 10 and n(1-p) ≥ 10	
Words:	Expected mean of success	
	and failure must be 10+.	
Summary:	"Sample is big enough."	

What it sounds like. Usually stated.

8 of 12

Conditions (mean)

ndependent

Math:	N ≥ 10n
Nords:	Population (N) is 10+ times
	bigger than sample (n).
Summary:	"Sample is just a small slice."

N ormal

Math:	n ≥ 30
Words:	For <i>most</i> populations,
	sample size (n) of 30+ gets
	Normality.
Summary:	"Sample is big enough."

What it sounds like. Usually stated.

Example, proportion

10 of 12

1. One of California's largest prisons is the Men's Colony outside San Luis Obispo. Two years ago, 26% of the approximately 6000 inmates at the Men's Colony were white. Suppose that this proportion has not changed. If a random sample of 80 inmates is taken, what is the probability that in the sample, more than 37% will be white?

Independence met, N≥800. Normality met, np>10, n(1-p)>10. Randomness stated.

Example, mean

Studies suggest that a new nitrogen/oxygen blend allows divers to dive with a mean dive time of 58.81 minutes, and a standard deviation of 5.2 minutes.

- If a random sample of 25 divers is taken, what is the probability that the average time they stay underwater is more than an hour?
- 2. If a random sample of 100 divers is taken, what is the probability that the average time they stay underwater is more than an hour?

Example ANSWER

Studies suggest a new nitrogen/oxygen blend allows divers to dive with a mean dive time of 58.81 minutes, and standard deviation 5.2 min.

1. If a random sample of 25 divers is taken, what is the probability that the average time they stay underwater is more than an hour?

Independence met, N≥250. Normality not met, n<30. Randomness stated. If we assume Normality.

$$\frac{60 - 58.81}{5.2} = 1.08$$
$$\frac{5.2}{\sqrt{25}} = 1 - 0.8599 = 0.1401$$

If we assume Normality, then there is ~14.01% chance that a random sample of 25 divers would have a mean dive time more than one hour.

2. If a random sample of 100 divers is taken, what is the probability that the average time they stay underwater is more than an hour?

Independence met, N≥1000. Normality met, n>30. Randomness stated. $\frac{60-58.81}{5.2} = 2.29$ $\frac{5.2}{\sqrt{100}} = 1-0.9890 = 0.011$ have a mean dive time more than one hour.