Section 0.4

"Before Calculus": Inverse Functions; Inverse Trigonometric Functions

All graphics are attributed to:

Calculus, 10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved.

Inverse Functions

- In everyday language the term "inversion" conveys the idea of a reversal.
- Therefore, in mathematics, the term inverse is used to describe functions that reverse (undo) one another.
 - f(x) = the original function
 - f^{- I} (x)=the inverse function (NOT THE RECIPROCAL)
- To find the inverse of a function, you must
 - 1. change f(x), if it is in the original, to y and
 - 2. interchange x and y,
 - 3. then solve for y.

• 4. The result will be the inverse.

Inverse Example

If $f(x) = 3 x_{w}^{2}$ follow the steps to find the inverse:

1. change f(x) to y $y = 3 x^2$ 2. interchange x and y $x = 3 y^2$ 3. solve for y $\frac{x}{3} = y^2$

4. The result will be the inverse.

$$f^{-1}(x) = \mp \sqrt{\left(\frac{x}{3}\right)}$$

 $\mp \sqrt{\left(\frac{x}{3}\right)} = y$

Inverse Functions (con't)

- To prove algebraically that two functions are inverses of each other, you must show that f^{- |} (f(x))=x and that f(f^{- |} (x))=x.
- See following slide for example.

Example 4 from pg 41 in book

First, check $f(f^{-1}(x)) = x$?

$$f(f^{-1}(x)) = f(\mp \sqrt{\left(\frac{x}{3}\right)}) = 3\left(\mp \sqrt{\left(\frac{x}{3}\right)}\right)^2 = 3\left(\frac{x}{3}\right) = x \text{ YEAH!!}$$

Now, check $f^{-1}(f(x)) = x$?

$$f^{-1}(f(x)) = f^{-1}(3x^2) = \mp \sqrt{(\frac{3x^2}{3})} = \mp \sqrt{(x^2)} = \mp x, \text{ not } x$$

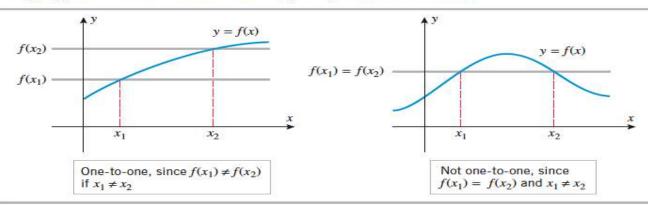
Therefore, for these to be inverses, we must limit the domain of the original parabola $to x \ge 0$. See the next slide for details.

Inverse Functions (con't)

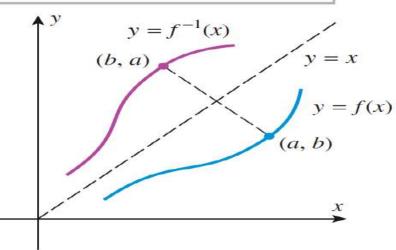
- Note: Sometimes, it is necessary to restrict the domain of an inverse f⁻¹ (x)=x or of an original f(x) in order to obtain a <u>function</u> (see examples on page 44).
- A function f(x) has an inverse iff it is one-toone (invertible), each x has one y and each y has one x (must pass vertical and horizontal line tests). See next page for examples.

Inverse Functions (con't)

0.4.4 THEOREM (The Horizontal Line Test) A function has an inverse function if and only if its graph is cut at most once by any horizontal line.



0.4.5 THEOREM If f has an inverse, then the graphs of y = f(x) and $y = f^{-1}(x)$ are reflections of one another about the line y = x; that is, each graph is the mirror image of the other with respect to that line.



Domain and Range of Inverse Functions

- The domain of the inverse = the range of f(x)
- The range of the inverse = the domain of f(x)
- This should make sense because all of the points are just reversed between the original and the inverse.
- Example: If $f(x) = \{(2,1),(3,3),(4,2),(5,7)\}$ then $f^{-1}(x) = \{(1,2),(3,3),(2,4),(7,5)\}$

You will use this idea to solve a problem or two on the section 0.4 assignment.

Inverse Trigonometric Functions

These are the definitions. Please see graphs on next page.

0.4.6 DEFINITION The *inverse sine function*, denoted by \sin^{-1} , is defined to be the inverse of the restricted sine function

 $\sin x, \quad -\pi/2 \le x \le \pi/2$

0.4.7 DEFINITION The *inverse cosine function*, denoted by \cos^{-1} , is defined to be the inverse of the restricted cosine function

 $\cos x$, $0 \le x \le \pi$

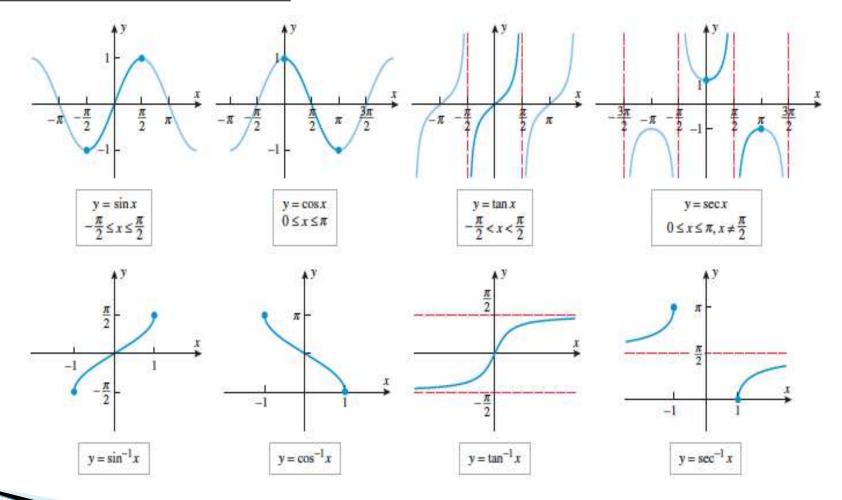
0.4.8 DEFINITION The *inverse tangent function*, denoted by \tan^{-1} , is defined to be the inverse of the restricted tangent function

 $\tan x$, $-\pi/2 < x < \pi/2$

0.4.9 DEFINITION* The *inverse secant function*, denoted by \sec^{-1} , is defined to be the inverse of the restricted secant function

 $\sec x$, $0 \le x \le \pi$ with $x \ne \pi/2$

Graphs of Trig. Functions and Their Inverses



Evaluating Inverse Trig. Functions

- Use the information from the unit circle to evaluate inverse trigonometric functions.
- Example:

- Since $\cos(\Pi/3) = \frac{1}{2}$, it is associated with the point $(\Pi/3, \frac{1}{2})$.
- For inverse cosine, the point is reversed: (1/2, $\Pi/3$).
- To evaluate cos I (1/2) you must find the angle whose cosine is 1/2. It just requires working backward.
- Answer: $\cos \frac{1}{2} (\frac{1}{2}) = \frac{1}{3}$
- Make sure your answer is in the domain of inverse cosine (see slide #9) or you may have to pick an angle in a different quadrant. Remember All Students Take Calculus.

Identities for Inverse Trigonometric Functions

Please read pages 47 and 48 in your book and we will go through this part in class together.