

Over Lesson 8–1

EXI

1 Find the geometric mean between 9 and 13.

B.4

C.
$$\sqrt{117} \approx 10.8$$

D.
$$\sqrt{250} \approx 15.8$$

Over Lesson 8–1

EXI

1 Find the geometric mean between 9 and 13.

🗹 5-Minute Check

Over Lesson 8–1

2 Find the geometric mean between $2\sqrt{5}$ and $5\sqrt{5}$.

 $3\sqrt{5} \approx 6.7$ Α. $10\sqrt{5}\approx 22.4$ Β. **c.** $\sqrt{50} \approx 7.1$ **D**. √145 ≈ 12.0

🗹 5-Minute Check

Over Lesson 8–1

2 Find the geometric mean between $2\sqrt{5}$ and $5\sqrt{5}$.

EXI

EXI

Theorem 8.4	Pythagorean Theorem	

- Words In a right triangle, the sum of the squares of the lengths of the legs is equal to the square of the length of the hypotenuse.
- Symbols If $\triangle ABC$ is a right triangle with right angle *C*, then $a^2 + b^2 = c^2$.

Proof Pythagorean Theorem

Given: $\triangle ABC$ with right angle at C

Prove: $a^2 + b^2 = c^2$

Proof:

Draw right triangle *ABC* so *C* is the right angle. Then draw the altitude from *C* to \overline{AB} . Let AB = c, AC = b, BC = a, AD = x, DB = y, and CD = h. Two geometric means now exist.

 $\frac{c}{a} = \frac{a}{y}$ and $\frac{c}{b} = \frac{b}{x}$ Geometric Mean (Leg) Theorem $a^2 = cy$ $b^2 = cx$ Cross products $a^2 + b^2 = cy + cx$ Add the equations. $a^2 + b^2 = c(y + x)$ Factor. $a^2 + b^2 = c \cdot c$ Since c = y + x, substitute c for (y + x). $a^2 + b^2 = c^2$ Simplify.

The side opposite the right angle is the hypotenuse, so c = x.

$$a^2 + b^2 = c^2$$
Pythagorean Theorem

$$4^2 + 7^2 = c^2 a = 4$$
 and $b = 7$

Find Missing Measures Using the Pythagorean Theorem

 $65 = c^2$ Simplify.

EXAMPLE 1

Take $t\sqrt{65} = c$ square root of each side.

Find Missing Measures Using the Pythagorean Theorem

 $65 = c^2$ Simplify.

EXAMPLE 1

Take $t_{\sqrt{65}} = c$ square root of each side.

Answer: $c = \sqrt{65}$

The hypotenuse is 12, so c = 12. $a^2 + b^2 = c^2$ Pythagorean Theorem $x^2 + 8^2 = 12^2b = 8$ and c = 12

EXAMPLE 1

Find Missing Measures Using the Pythagorean Theorem

 x^2 + 64= 144Simplify.

 x^2 = 80Subtract 64 from each side.

Take the positive coverage root of $e_i x = \sqrt{80}$ or $4\sqrt{5}$ simplify.

EXAMPLE 1

Find Missing Measures Using the Pythagorean Theorem

 x^2 + 64= 144Simplify.

 x^2 = 80Subtract 64 from each side.

Take the constitute of the root of $e_i x = \sqrt{80}$ or $4\sqrt{5}$ simplify.

Answer:
$$x = 4\sqrt{5}$$

EXIT

EXI

KeyConcept Common Pythagorean Triples			
3, 4, 5	5, 12, 13	8, 15, 17	7, 24, 25
6, 8, 10	10, 24, 26	16, 30, 34	14, 48, 50
9, 12, 15	15, 36, 39	24, 45, 51	21, 72, 75
3 <i>x</i> , 4 <i>x</i> , 5 <i>x</i>	5 <i>x</i> , 12 <i>x</i> , 13 <i>x</i>	8 <i>x</i> , 15 <i>x</i> , 17 <i>x</i>	7 <i>x</i> , 24 <i>x</i> , 25 <i>x</i>

EXAMPLE 2

Use a Pythagorean Triple

Use a Pythagorean triple to find *x*. Explain your reasoning.

EX

Use a Pythagorean Triple

Notice that 24 and 26 are multiples of 2: $24 = 2 \cdot 12$ and 26 = 2 \cdot 13. Since 5, 12, 13 is a Pythagorean triple, the missing leg length *x* is 2 \cdot 5 or 10.

Answer:

EXAMPLE 2

EXAMPLE 2 Use a Pythagorean Triple

Notice that 24 and 26 are multiples of 2: $24 = 2 \cdot 12$ and 26 = 2 \cdot 13. Since 5, 12, 13 is a Pythagorean triple, the missing leg length *x* is 2 \cdot 5 or 10.

Answer:*x* = 10

Check: $24^2 + 10^2 = 26^2$ Pythagorean Theorem

676 = 676Simplify.

STANDARDIZED TEST EXAMPLE 3 Scheck Your Progress CheckPoint

A 10-foot ladder is placed against a building. The base of the ladder is 6 feet from the building. How high does the ladder reach on the building?

A.6 ft

B.8 ft

C.9 ft

D.10 ft

STANDARDIZED TEST EXAMPLE 3 Scheck Your Progress CheckPoint

A 10-foot ladder is placed against a building. The base of the ladder is 6 feet from the building. How high does the ladder reach on the building?

A.6 ft

C.9 ft

D.10 ft

EXAMPLE 4

Classify Triangles

A. Determine whether 9, 12, and 15 can be the measures of the sides of a triangle. If so, classify the triangle as *acute, right,* or *obtuse*. Justify your answer.

Step 1Determine whether the measures can form a triangle using the Triangle Inequality Theorem.

9 + 12 > 15 ✓ 9 + 15 > 12 ✓ 12 + 15 > 9 ✓

The side lengths 9, 12, and 15 can form a triangle.

EXAMPLE 4 Classify Triangles

Step 2Classify the triangle by comparing the square of the longest side to the sum of the squares of the other two sides.

 $c^{2} = a^{2} + b^{2}Com^{2}pare c^{2} and a^{2} + b^{2}$.

 $15^2 = 12^2 + 9^2 S^2$ ubstitution

225= 225Simplify and compare.

Answer:

Classify Triangles

Step 2Classify the triangle by comparing the square of the longest side to the sum of the squares of the other two sides.

 $c^{2} = a^{2} + b^{2}Com^{2}pare c^{2} and a^{2} + b^{2}$.

 $15^2 = 12^2 + 9^2 S^2$ ubstitution

EXAMPLE 4

225= 225Simplify and compare.

Answer:Since $c^2 = a^2 + b^2$, the triangle is a right triangle.

EXAMPLE 4

Classify Triangles

B. Determine whether 10, 11, and 13 can be the measures of the sides of a triangle. If so, classify the triangle as *acute, right,* or *obtuse*. Justify your answer.

Step 1Determine whether the measures can form a triangle using the Triangle Inequality Theorem.

10 + 11 > 13 ✓ 10 + 13 > 11 ✓ 11 + 13 > 10 ✓

The side lengths 10, 11, and 13 can form a triangle.

EXAMPLE 4 Classify Triangles

Step 2Classify the triangle by comparing the square of the longest side to the sum of the squares of the other two sides.

 $c^{2} = a^{2} + b^{2}Com^{2}pare c^{2} and a^{2} + b^{2}$.

 $13^2 = 11^2 + 10^2$ Substitution

169< 221Simplify and compare.

Answer:

Classify Triangles

Step 2Classify the triangle by comparing the square of the longest side to the sum of the squares of the other two sides.

 $c^{2} = a^{2} + b^{2}$ Compare c^{2} and $a^{2} + b^{2}$.

 $13^2 = 11^2 + 10^2$ Substitution

EXAMPLE 4

169< 221Simplify and compare.

Answer:Since $c^2 < a^2 + b^2$, the triangle is acute.

EXAMPLE 4 Check Your Progress

A. Determine whether the set of numbers 7, 8, and 14 can be the measures of the sides of a triangle. If so, classify the triangle as *acute, right,* or *obtuse*. Justify your answer.

A.yes, acute

B.yes, obtuse

C.yes, right

D.not a triangle

EXAMPLE 4 Check Your Progress

A. Determine whether the set of numbers 7, 8, and 14 can be the measures of the sides of a triangle. If so, classify the triangle as *acute, right,* or *obtuse*. Justify your answer.

A.yes, acute

C.yes, right

D.not a triangle

B. Determine whether the set of numbers 14, 18, and 33 can be the measures of the sides of a triangle. If so, classify the triangle as *acute, right,* or *obtuse*. Justify your answer.

A.yes, acute

B.yes, obtuse

C.yes, right

D.not a triangle

B. Determine whether the set of numbers 14, 18, and 33 can be the measures of the sides of a triangle. If so, classify the triangle as *acute, right,* or *obtuse*. Justify your answer.

A.yes, acute

B.yes, obtuse

C.yes, right

