

Additional Examples

 $\sqrt{243} = \sqrt{81 \cdot 381}$ is a perfect square and a factor of 243.

= $\sqrt{81} \cdot \sqrt{3}$ Use the Multiplication Property of Square Roots.

= $9\sqrt{3}$ Simplify 81. $\sqrt{-1}$

Simplifying Radicals

LESSON 10-1

Additional Examples

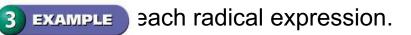
=Simplif

28x⁷.
$$\sqrt{}$$

$$\sqrt{28x^7} = \sqrt{4x^6 \cdot 7x}$$

$$=\sqrt{4x^6}\cdot\sqrt{7x}$$

Use the Multiplication Property of Square Roots.


$$= 2x^3\sqrt{7x} \qquad \text{Simplify} \sqrt{4x^6}.$$

Simplifying Radicals

PEARSON Prentice Hall

Additional Examples

a. $\sqrt{12} \cdot \sqrt{32}$

 $\sqrt{12} \cdot \sqrt{32} = \sqrt{12 \cdot 32}$ Use the Multiplication Property of Square Roots.

- = $\sqrt{384}$ Simplify under the radical.
- = $\sqrt{64 \cdot 6}64$ is a perfect square and a factor of 384.
- = $\sqrt{64} \cdot \sqrt{60}$ Use the Multiplication Property of Square Roots.

=
$$8\sqrt{6}$$
Simplify 64. $\sqrt{-1}$

Simplifying Radicals
LESSON 10-1

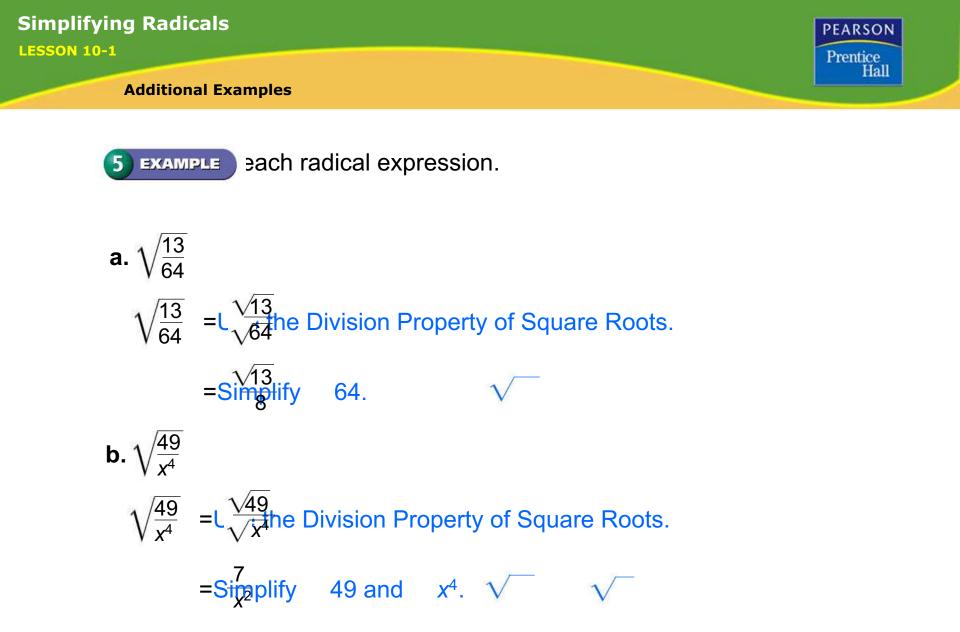
Additional Examples

- **b.** $7\sqrt{5x} \cdot 3\sqrt{8x}$
 - $7\sqrt{5x} \cdot 3\sqrt{8x} = 21\sqrt{40x^2}$ Multiply the whole numbers and use the Multiplication Property of Square Roots.
 - = $21\sqrt{4x^2 \cdot 104x^2}$ is a perfect square and a factor of $40x^2$.
 - = $21\sqrt{4x^2} \cdot \sqrt{10}$ Use the Multiplication Property of Square Roots.

$$= 21 \cdot 2x \sqrt{10} \text{Simplify} \quad 4x^2. \quad \sqrt{10} \text{Simplify} \quad 4x^2.$$

= $42x\sqrt{10}$ Simplify.

4 ESuppose you are looking out a fourth floor window 52 ft above the ground. Use the formula $d = \sqrt{1.5h}$ to estimate the distance you can see to the horizon. Round your answer to the nearest mile.


 $d = \sqrt{1.5h}$

- = $\sqrt{1.5 \cdot 52}$ Substitute 52 for *h*.
- = $\sqrt{78}$ Multiply.
- ≈.83176Use a calculator.

To the nearest mile, the distance you can see is 9 miles.

EXAMPLE each radical expression.

a.
$$\sqrt{\frac{120}{10}}$$

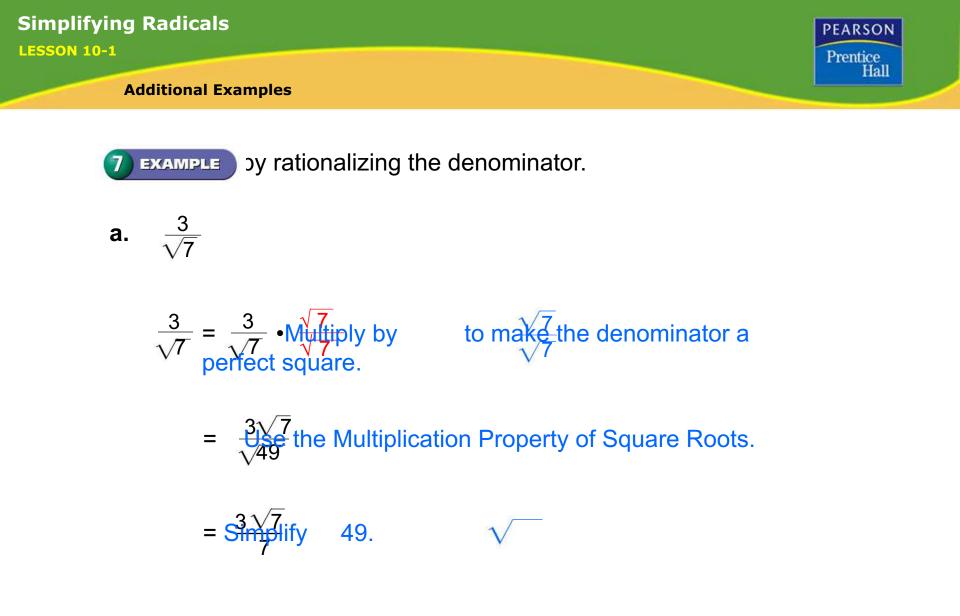
6

$$\sqrt{\frac{120}{10}} = \sqrt{12}$$
 Divide.

= $\sqrt{4 \cdot 34}$ is a perfect square and a factor of 12.

= $\sqrt{4} \cdot \sqrt{3}$ Use the Multiplication Property of Square Roots.

= $2\sqrt{3}$ Simplify 4. $\sqrt{}$


Simplifying Radicals PEARSON **LESSON 10-1** Prentice Hall **Additional Examples** EXAMPLE (continued) **b.** $\sqrt{\frac{75x^5}{48x}}$ $\sqrt{\frac{75x^5}{48x}} = \sqrt{\frac{25x^4}{16}}$ the numerator and denominator by 3x.

 $= U_{\sqrt{16}}^{\sqrt{25x^4}}$ Division Property of Square Roots.

= $\sqrt{25} \cdot \sqrt{x^4}$ = $\sqrt{16}$ Multiplication Property of Square Roots.

=
$$S_{11}^{5x^2}$$
 plify 25, x^4 , and $\sqrt{16}$. $\sqrt{-16}$

Simplifying Radicals PEARSON **LESSON 10-1** Prentice Hall **Additional Examples** d) EXAMPLE **b.** $\frac{\sqrt{11}}{\sqrt{12x^3}}$ $\frac{\sqrt{11}}{\sqrt{12x^3}} = \frac{\sqrt{11}}{\sqrt{12x^3}} \cdot M_{0} + M_$ = $\frac{\sqrt{33x}}{\sqrt{36x}}$ the Multiplication Property of Square Roots. = Singplify 36x⁴.

