## **Alternating Estimation Theorem**

- 1.  $f(x) = x^{2/3}$  centered at x = 1
- a. Given the function, find the fourth order polynomial
- c. Use the alternate estimation theorem to determine the error bound  $|f(x) P(x)| \le R$  at x = 1.2
- 2.  $f(x) = x^{-2}$  centered at x = 1
- a. Given the function, find the fourth order polynomial
- c. Use the alternate estimation theorem to determine the error bound  $|f(x) P(x)| \le R$  at x = 1.1
- 3.  $f(x) = \frac{1}{1+x}$  centered at x = 0
- a. Given the function, find the fourth order polynomial
- c. Use the alternate estimation theorem to determine the error bound  $|f(x) P(x)| \le R$  at x = -.1
- 4.  $f(x) = \sin x$  centered at x = 0
- a. Given the function, find the fourth order polynomial
- c. Use the alternate estimation theorem to determine the error bound  $|f(x) P(x)| \le R$  at x = -.1
- 5.  $f(x) = \cos x$  centered at x = 0
- a. Given the function, find the fourth order polynomial
- c. Use the alternate estimation theorem to determine the error bound  $|f(x) P(x)| \le R$  at x = .1
- 6.  $f(x) = \ln(1+x)$  centered at x = 0
- a. Given the function, find the fourth order polynomial
- c. Use the alternate estimation theorem to determine the error bound  $|f(x) P(x)| \le R$  at x = .1