

XOR, XNOR, & Binary Adders

Digital Electronics

XOR, XNOR & Adders

This presentation will demonstrate

- The basic function of the exclusive OR (**XOR**) gate.
- The basic function of the exclusive NOR (XNOR) gate.
- How XOR and XNOR gates can be used to implement combinational logic design.
- How **XOR** gates can be using to design half and full adders.
- How full adders can be implemented with Small Scale Integration (SSI) and Medium Scale Integration (MSI) logic.
- How single bit half and full adders can be cascaded to make multi-bit adders.

XOR Gate – Exclusive OR

X	Υ	Ζ
0	0	0
0	1	1
1	0	1
1	1	0

XNOR Gate – Exclusive NOR

X	Υ	Ζ
0	0	1
0	1	0
1	0	0
1	1	1

Logic Design with XOR & XNOR

Example

Algebraically manipulate the logic expression for F_1 so that XOR and XNOR gates can be used to implement the function. Other AOI gates can be used as needed.

 $\mathbf{F}_{_{1}} = \mathbf{X} \ \mathbf{\overline{Y}} \ \mathbf{Z} + \mathbf{\overline{X}} \ \mathbf{Y} \ \mathbf{Z} + \mathbf{\overline{X}} \ \mathbf{\overline{Y}} \ \mathbf{\overline{Z}} + \mathbf{X} \ \mathbf{\overline{Y}} \ \mathbf{\overline{Z}}$

Logic Design with XOR & XNOR

Solution

$$F_{1} = X \overline{Y} Z + \overline{X} Y Z + \overline{X} \overline{Y} \overline{Z} + X \overline{Y} Z$$

$$F_{1} = Z \left(X \overline{Y} + \overline{X} Y \right) + \overline{Y} \left(\overline{X} \overline{Z} + X Z \right)$$

$$F_{1} = Z \left(X \oplus Y \right) + \overline{Y} \left(\overline{X} \oplus \overline{Z} \right)$$

Binary Addition

Two Types of Adders

Half Adder

- 2 Inputs (A & B)
- 2 Outputs (Sum & C_{out})
- Used for LSB only

Full Adder

- 3 Inputs (A, B, C_{in})
- 2 Outputs (Sum & Cout)
- Used for all other bits

Half Adder – Design

А	В	Sum	Cout
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$Sum = AB + AB = A \oplus B$$

 $C_{out} = AB$

Half Adder - Circuit

Full Adder – Design of Cout

А	В	Cin	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

 $\mathbf{C}_{_{\text{out}}} = \mathbf{A} \, \mathbf{B} + \mathbf{B} \, \mathbf{C}_{_{\text{in}}} + \mathbf{A} \, \mathbf{C}_{_{\text{in}}}$

Full Adder – Design of Sum

А	В	Cin	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

 $Sum = A \ B \ C_{_{in}} + A \ B \ C_{_{in}} + A \ B \ C_{_{in}} + A \ B \ C_{_{in}}$

K-Mapping did NOT help us simplify . . . Let's try Boolean algebra.

Boolean Simplification of Sum

Sum =
$$\overline{A} \ \overline{B} \ C_{IN} + \overline{A} \ \overline{B} \ \overline{C}_{IN} + A \ \overline{B} \ \overline{C}_{IN}$$

Sum = $\overline{A} \left(\overline{B} \ C_{IN} + \overline{B} \ \overline{C}_{IN} \right) + A \left(\overline{B} \ C_{IN} + \overline{B} \ \overline{C}_{IN} \right)$
Sum = $\overline{A} \left(\overline{B} \oplus C_{IN} \right) + A \left(\overline{B} \oplus C_{IN} \right)$
Let K = B $\oplus \ C_{IN}$ and substitute
Sum = $\overline{A} \left(\overline{K} \right) + A \left(\overline{K} \right)$
Sum = A $\oplus \ \overline{K}$
Replacing B $\oplus \ C_{IN}$ for K
Sum = A $\oplus \ \overline{B} \oplus \ C_{IN}$

Full Adder - Circuit

Full Adder: AOI vs. XOR

Though XOR gates can be used for implementing any combinational logic design, their primary application is adder circuits. Compare the AOI implementation (above) for the sum function to the XOR implementation (below).

MSI Full Adder

SSI - Full Adder

MSI - Full Adder

Cascading Adders – Four Bits

Four Bit Adder with SSI Logic

8

Four Bit Adder with MSI Logic

