Algebra Cheat Sheets provide you with a tool for teaching your students note-taking, problem-solving, and organizational skills in the context of algebra lessons. These sheets teach the concepts as they are presented in the Algebra Class Software.

<u>Concept</u>	<u>Cheat Sheet</u>
Adding Integers	1
Subtracting Integers	2
Multiplying Integers	3
Dividing Integers	4
Absolute Value	5
Combining Like Terms	6
Distributive Property I	7
Adding Expressions	8
Subtracting Expressions	9
Writing Expressions	10
Evaluating Expressions	11
Solving Equations	12
Solving Inequalities	13
Writing Equations	14
Writing Inequalities	15
Solving Literal Equations	16
Points on the Coordinate Plane	17
Graphing – Using Slope and Intercept	18
Graphing – Using Function Tables	19
Find the Slope of a Line from Two Points	20
Equation of a Line	21
Graphing Inequalities	22

<u>Concept</u>	<u>Cheat Sheet</u>
Forms of Linear Equations	23
Solving Equations II	24
Multiplying Monomials	25
Dividing Monomials	26
Raising Monomials to a Power	27
Negative Powers of Monomials	28
Dividing by a Monomial	29
Greatest Common Factor (GCF)	30
Combining Like Terms II	31
Adding Polynomials	32
Subtracting Polynomials	33
Missing Factors	34
Degree of a Polynomial	35
Multiplying Polynomials by –1	36
Multiplying a Polynomial by a Variable	37
Multiplying a Polynomial by an Integer	38
Multiplying a Polynomial by a Monomial	39
Multiplying Two Binomials	40

Algebra Cheat Sheet 1	Adding Integers
 Adding means combinin 	g
1. If the signs are the same	e, then $8 + 4 = 12$
add and use the same sig	gn. $-8 + -4 = -12$
2. If the signs are different	, then
subtract and use the sign	n of the $-8+4=-4$
larger number.	8+-4=4

Adding Integers – Examples

Subtracting Integers

Subtracting is the opposite of adding.

Change the sign of the second term and add.

8 - (+4) = 8 - 4 = 4- 8 - (+4) = - 8 - 4 = -12 8 - (-4) = 8 + 4 = 12- 8 - (-4) = - 8 + 4 = -4

Subtracting Integers – Examples

Algebra Cheat Sheet 3	Multiplying Integers
- Multiply integers as you wo then apply the sign rules to	ould whole numbers, the answer.
1. If the signs are the same, product is positive.	the (8) $(4) = 32$ (-8) (-4) = 32
2. If the signs are different, to product is negative.	the $(-8) (4) = -32$ (8) $(-4) = -32$

Multiplying Integers – Examples

Algebra Cheat	
Sheet 4	

Divide integers as you would whole numbers, then apply the sign rules to the answer.

1. If the signs are the same, the quotient is positive.	$32 \div 8 = 4$ $-32 \div -8 = 4$
2. If the signs are different, the quotient is negative.	$32 \div -8 = -4$ $-32 \div 8 = -4$

Dividing Integers – Examples

Absolute Value – Examples

Combining Like Terms

To combine terms, the variables must be identical.

- 1. Put the terms in alphabetical order.
- 2. Combine each set of like terms.
- 3. Put the answers together.

Combining Like Terms – Examples

3a + 4b + 2c + 5a - 6c - 2b

1. Put the terms in alphabetical order:

3a + 5a + 4b - 2b + 2c - 6c

- 2. Combine each set of like terms:
 - 3a + 5a = 8a
 4b 2b = 2b
 - 2c 6c = -4c
- 3. Put the answer together:

Combining Like Terms

To combine terms, the variables must be identical.

- 1. Put the terms in alphabetical order.
- 2. Combine each set of like terms.
- 3. Put the answers together.

Combining Like Terms – Examples

Algebra Cheat
Sheet 7

Distributive Property I

Multiply each term inside the parenthesis by the term on the outside of the parenthesis.

- c(a + b) = ca + cb
- c(a b) = ca cb

Distributive Property – Examples

3b (a + 4) = 3b (a) + 3b (4) = 3ab + 12b

Algebra Cheat Sheet 7	Distributive Property I
Multiply each term inside term on the outside of the	the parenthesis by the parenthesis.
• c(a + b)	= ca + cb
• c(a - b)	= ca - cb

Distributive Property – Examples

Adding Expressions

- **1**. Set the problem up vertically.
- 2. Combine the terms.

Adding Expressions – Examples

Write the problem vertically:	
8c + 2d - 4g	
<u>-7c + 4d - 8g</u>	
1. Combine the c's:	8c - 7c = c
2. Combine the d's:	2d + 4d = 6d
3. Combine the g's:	-4g - 8g = -12g
4. The answer is:	c + 6d - 12g

Adding Expressions

- **1**. Set the problem up vertically.
- 2. Combine the terms.

Adding Expressions – Examples

Algebra Cheat
Sheet 9

Subtracting Expressions

- 3. Set the problem up vertically.
- 4. Change the signs of each term on the bottom line.
- 5. Combine the terms.

Subtracting Expressions – Examples

Change the bottom signs:	Combine the terms:
8c + 2d - 4g	8c + 2d - 4g
<u>- 7c - 4d + 8g</u>	<u>-7c + 4d - 8g</u>
1. Combine the c's:	8c - 7c = c
2. Combine the d's:	2d + 4d = 6d
3. Combine the g's:	-4g - 8g = -12g
4. The answer is:	c + 6d - 12g

Subtracting Expressions

- 1. Set the problem up vertically.
- 2. Change the signs of each term on the bottom line.
- 3. Combine the terms.

Subtracting Expressions – Examples

Algebra Cheat
Sheet 10

Look for 'clue' words:

- 1. For the clue words, '*the product of* place the constant before the variable. Do not use a sign.
- 2. The clue words '*more than*' and '*less than*' indicate inverted order.
- 3. If there are no clue words, write the expression in the order that the words appear.

1.	The product of 4 and x The product of y and 5	4x 5y
2.	x more than three thirteen less than y	3 + x y - 13
3.	the sum of ten and x the difference between y and 4	10 + x y - 4

Writing Expressions – Examples

Look for 'clue' words:

- 1. For the clue words, '*the product of*' place the constant before the variable. Do not use a sign.
- 2. The clue words '*more than*' and '*less than*' indicate inverted order.
- 3. If there are no clue words, write the expression in the order that the words appear.

Writing Expressions – Examples

Algebra Cheat
Sheet 11

- **Step 1.** Replace the variable with parentheses.
- Step 2. Place the value of the variable inside the parentheses.
- **Step 3. Calculate the answer.**

Evaluating Expressions – Examples

Evaluate 10x + 7, when x = 5.

Step 1. 10 () + 7
Step 2. 10 (5) + 7
Step 3. 50 + 7 = 57

- **Step 1.** Replace the variable with parentheses.
- Step 2. Place the value of the variable inside the parentheses.
- **Step 3. Calculate the answer.**

Evaluating Expressions – Examples

Algebra Cheat Sheet 12		Solving Equations	
Step 1.	Get all the variables on the left and all the numbers on the right of the equal sign by adding opposites.		
Step 2.	Divide by the coefficient of the variable to determine its value.		

Solving Equations – Examples

$$2d + 3 = -7$$
1. $-3 = -3$
 $2d = -10$
2. $d = -5$

Solving Equations

- **Step 1.** Get all the variables on the left and all the numbers on the right of the equal sign by adding opposites.
- **Step 2.** Divide by the coefficient of the variable to determine its value.

Solving Equations – Examples

Algebra Cheat Sheet 13		Solving Inequalities
Step 3.	Get all the variables on the left and all the numbers on the right of the sign by adding opposites.	
Step 4.	Divide by the positive value of the variable's coefficient.	
Step 5.	p 5. If the variable is negative, divide by −1 and reverse the sign.	

Solving Inequalities – Examples

	-2d + 3 < -7
1.	-3 = -3
	-2d < -10
2.	-d < -5
3.	d > 5

Solving Inequalities

- **Step 1.** Get all the variables on the left and all the numbers on the right of the sign by adding opposites.
- **Step 2.** Divide by the positive value of the variable's coefficient.
- **Step 3.** If the variable is negative, divide by -1 and reverse the sign.

Solving Inequalities – Examples

Algebra Cheat
Sheet 14

Look for 'clue' words:

- 1. For the clue words, '*the product of*' place the constant before the variable. Do not use a sign.
- 2. The clue words '*more than*' and '*less than*' indicate inverted order.
- 3. If there are no clue words, write the equation in the order that the words appear.
- 4. The equal sign is used in place of the word '*is*.'

Writing Equations – Examples

1.	The product of 4 and x is 12. The product of y and 5 is 10.	4x = 12 5y = 10
2.	x more than three is 12. Thirteen less than y is – 3.	3 + x = 12 y - 13 = 3
3.	The sum of ten and x is 12. The difference between y and 4 is – 2.	10 + x = 12 y - 4 = -2

Look for 'clue' words:

- 1. For the clue words, '*the product of*' place the constant before the variable. Do not use a sign.
- 2. The clue words '*more than*' and '*less than*' indicate inverted order.
- 3. If there are no clue words, write the equation in the order that the words appear.
- 4. The equal sign is used in place of the word '*is*.'

Writing Equations – Examples

Algebra Cheat Sheet 15	Writing Inequalities		
Look for 'clue' words:			
1. For the clue words, ' <i>the product of</i> ' place the constant before the variable. Do not use a sign.			
2. The clue words ' <u>more than</u> ' and ' <u>less than</u> ' indicate inverted order.			
3. If there are no clue words, write the equation in the order that the words appear.			
4. The < is used in place	. The < is used in place of ' <i>is less than</i> .'		
5. The > is used in place of	of ' <u>is greater than</u> .'		

Writing Inequalities – Examples

 The product of 4 and x is greater than 12. 	4x > 12
2. <i>x</i> more than three is less than 12.	3 + x < 12
3. The difference between <i>y</i> and 4 is greater than – 2.	y - 4 > - 2

Look for 'clue' words:

- 1. For the clue words, '*the product of*' place the constant before the variable. Do not use a sign.
- 2. The clue words '*more than*' and '*less than*' indicate inverted order.
- 3. If there are no clue words, write the equation in the order that the words appear.
- 4. The < is used in place of '*is less than*.'
- 5. The > is used in place of '*is greater than*.'

Writing Inequalities – Examples

Algebra Cheat Sheet 16		Solving Literal Equations	
Step 1.	 Get the desired variable on the left and all the others on the right of the equal sign by adding opposites. 		
Step 2.	ep 2. Divide both sides by the positive value of any other variable on the left.		
	Solving Literal Eq	uations – Example	

Solve for l (length)		A = lw
	1.	lw = A
Divide by w		<u>A</u>
	2.	I = W

Solving Literal Equations

- **Step 1.** Get the desired variable on the left and all the others on the right of the equal sign by adding opposites.
- **Step 2.** Divide both sides by the positive value of any other variable on the left.

Solving Literal Equations – Example

Alge S	bra Cheat heet 17	<i>Points on the Coordinate Plane</i>
<u>Locati</u>	ing Points:	
Step 1.	Find the location on the x-axis. It is –3.	• ¥
Step 2.	Find the location on the y-axis. It is 4.	$-x \leftarrow -4$ -2 2 4 $\rightarrow x$
Step 3.	Write the location in this form (x, y). The point is (-3, 4).	-2 -4 -y
<u>Plottii</u>	ng points:	
Р	Plot the point $(5, -3)$ of	n the coordinate plane.
Step 1.	Begin at point (0, 0).	Move 5 to the right (on the

- x-axis) since 5 is positive.
- **Step 2.** Move 3 down since –3 is negative.

Step 3. Plot the point.

Notes - Points on the Coordinate Plane

- Use graph paper.
- Begin by marking the x-axis and y-axis as shown in the diagram above.

Graphing – Using Slope and Intercept

- The y-intercept is the constant in the equation. It is the value of y when x = 0.
- A line with a positive slope goes up and to the right.
- A line with a negative slope goes down and to the right.

To graph the equation: y = 5x - 3

Step 1. The y-intercept is -3. Plot the point (0, -3).

Step 2. The slope is 5. Move 1 to the right and 5 up from the first point. Plot the second point at (1, 2).

Step 3. Draw the line connecting the two points.

Graphing - Using the Slope and y-intercept

Graphing – Using Slope and Intercept

- The y-intercept is the constant in the equation. It is the value of y when x = 0.
- A line with a positive slope goes up and to the right.
- A line with a negative slope goes down and to the right.
- To graph the equation: y = 5x 3
 - **Step 1.** The y-intercept is -3. Plot the point (0, -3).
 - **Step 2.** The slope is 5. Move 1 to the right and 5 up from the first point. Plot the second point at (1, 2).

Step 3. Draw the line connecting the two points.

Graphing - Using the Slope and y-intercept

Graphing – Using Function Tables

- **Step 1.** Substitute '0' for x, and calculate the value of y. Enter both on the first line of the function table.
- **Step 2.** Substitute '1' for x, then calculate the value of y. Enter both numbers on the second line of the function table.
- **Step 3.** Plot the two points, and draw a line between them.

Graphing - Using Function Tables

$\mathbf{y} = \mathbf{5x} - \mathbf{3}$

Step 1. Substitute '0' for x; y = -3. Enter x and y on the first line.

X	у
0	-3
1	2

- **Step 2.** Substitute '1' for x; y = 2. Enter these numbers on the second.
- **Step 3.** Plot the two points, (0, -3) and (1, 2) then draw a line between them.

Algebi	ra Cheat	<i>Graphing – Using</i>
She	eet 19	Function Tables
Step 1 . S	Substitute 'O' for	r x, and calculate the value of y.
E	Enter both on th	ne first line of the function table.
Step 2. S E ft	p 2. Substitute '1' for x, then calculate the value of y. Enter both numbers on the second line of the function table.	
Step 3. F	Plot the two poin hem.	nts, and draw a line between

Graphing - Using Function Tables

Algebra Cheat Sheet 20	Find the Slope of a Line from Two Points	
Step 1. Make a function table, entering the x and y values of the two points.		
Step 2. Subtract: $y_1 - y_2$	Subtract: $y_1 - y_2 = Rise$	
Step 3. Subtract: $x_1 - x_2 = Run$		
Step 4. Slope = $\frac{\text{Ris}}{\text{Rus}}$	$\frac{\mathbf{e}}{\mathbf{n}} = \frac{\mathbf{y}_1 - \mathbf{y}_2}{\mathbf{x}_1 - \mathbf{x}_2}$	

Slope of a Line from Two Points

Find the slope of the line which includes points (-2, -2) and (1, 6).

Step 1.	Enter the x and y	
	values for the two	
	points.	

- **Step 2.** The rise is (-2) (5) or –7.
- **Step 3.** The run is (-2) (1) or –1
- **Step 4.** The slope is 4.

x	у
- 2	- 2
1	6
- 2	- 8
Run	Rise

$$\frac{\text{Rise}}{\text{Run}} = \frac{-8}{-2}$$

Algebra Cheat Sheet 20	Find the Slope of a Line from Two Points	
Step 1. Make a function table, entering the x and y values of the two points.		
Step 2. Subtract: $y_1 - y_2$	Subtract: $y_1 - y_2 = Rise$	
Step 3. Subtract: $x_1 - x_2 = Run$		
Step 4. Slope = $\frac{\text{Ris}}{\text{Rus}}$	$\frac{\mathbf{e}}{\mathbf{n}} = \frac{\mathbf{y}_1 - \mathbf{y}_2}{\mathbf{x}_1 - \mathbf{x}_2}$	

Slope of a Line from Two Points
Equation of a Line

To find the equation of a line shown on a graph.

- **Step 1.** Determine the y-intercept. Find the point where x = 0. Substitute this value in the equation in place of 'b.'
- **Step 2.** Find the value of y when x = 1.
- **Step 3.** Subtract the value found in Step 1 from the value found in Step 2. This is the slope. Substitute this value in the equation in place of 'm.'

Equation of a Line – Example

Equation of a Line

To find the equation of a line shown on a graph.

- **Step 1.** Determine the y-intercept. Find the point where x = 0. Substitute this value in the equation in place of 'b.'
- **Step 2.** Find the value of y when x = 1.
- **Step 3.** Subtract the value found in Step 1 from the value found in Step 2. This is the slope. Substitute this value in the equation in place of 'm.'

Equation of a Line – Example

Graphing Inequalities

- **Step 1.** Plot the y-intercept.
- **Step 2.** Use the slope as the rise, and 1 as the run. Count the rise and run to find another point.
- **Step 3.** Determine what kind of a line will connect the points. (Use a dotted line for < or >; use a solid line for \leq or \geq .)
- **Step 4.** Shade above the line for greater than (>), and below the line for less than (<).

Example – Graphing Inequalities

$y \leq x + 2$

- **Step 1.** Substitute '0' for x; y = 2. Enter x and y on the first line.
- **Step 2.** Substitute '1' for x; y = 3. Enter these numbers on the second.
- **Step 3.** Plot the two points, (0, 2) and (1, 3) then draw a solid line between them.

Step 4. Shade below the line because the sign is ≤.

Algebra Cheat
Sheet 22

- **Step 1.** Plot the y-intercept.
- **Step 2.** Use the slope as the rise, and 1 as the run. Count the rise and run to find another point.
- **Step 3.** Determine what kind of a line will connect the points. (Use a dotted line for < or >; use a solid line for \leq or \geq .)
- **Step 4.** Shade above the line for greater than (>), and below the line for less than (<).

Example – Graphing Inequalities

Algebra Cheat Sheet 23	For	rms of Linear Equations
 Slope_intercept form		y = mx + b
Standard form		Ax + by = C

Forms of Linear Equations – Examples

Change the slope-intercept equation to standard form.

 $y = \frac{2}{3}x - 3 \text{ slope-intercept form}$ 5y = 2x - 15 Multiply each side by 5.-2x + 5y = -15 Subtract 2x from each side.

Change the standard form equation to slopeintercept form.

3x + 2y = 6	Standard form equation
2y = -3x + 6	Subtract 3x from each side.
$y = \frac{-3}{2}x + 3$	Slope-intercept form

Algebra Cheat Sheet 23	Forms of Linear Equations
 Slope_intercept form	y = mx + b
Standard form	Ax + by = C

Forms of Linear Equations – Examples

Solving Equations II

- **Step 1.** Get all the variables on the left and all the numbers on the right of the equal sign by adding opposites.
- Step 2. Combine like terms.
- **Step 3.** Divide by the coefficient of the variable to determine its value.

Solving Equations II – Example

$$4x + 4 = 2x - 6$$
1.
$$4x - 2x = -6 - 4$$
2.
$$2x = -10$$
3.
$$x = -5$$

Solving Equations II

- **Step 1.** Get all the variables on the left and all the numbers on the right of the equal sign by adding opposites.
- **Step 2.** Combine like terms
- **Step 3.** Divide by the coefficient of the variable to determine its value.

Solving Equations II – Examples

Multiplying Monomials

• To multiply monomials, add the exponents of the same variables.

Example – Multiplying Monomials

$(a^3b^5c^8)(a^2b^7c^1)$

Step 1. Multiply the a's	$(a^3)(a^2) = a^5$
Step 2. Multiply the b's	$(b^5)(b^7) = b^{12}$
Step 3. Multiply the c's	$(c^8)(c^1) = c^9$
Step 4. Put them together:	
$(a^3b^5c^8)(a^2b^7c^1)$	$= a^5 b^{12} c^9$

Multiplying Monomials

• To multiply monomials, add the exponents of the same variables.

Examples – Multiplying Monomials

• To divide monomials, subtract the exponents of the same variables.

Dividing Monomials

• To divide monomials, subtract the exponents of the same variables.

Examples – Dividing Monomials

Raising Monomials to a Power

• To raise monomials to a power, multiply the exponent of each variable by the power.

Example – Raising Monomials to a Power

$(a b^4 c^2)^2$

Step 1. Square the a's	(a)(a) $= a^2$	
Step 2. Square the b's	$(b^4)(b^4) = b^8$	
Step 3. Square the c's	$(c^2)(c^2) = c^4$	
Step 4. Put them together:		
$(a b^4 c^2)^2$	$= a^2 b^8 c^4$	

Raising Monomials to a Power

• To raise monomials to a power, multiply the exponent of each variable by the power.

Examples – Raising Monomials to a Power

Negative Powers of Monomials

• To multiply, divide or raise monomials to negative powers, use the rules for integers.

Example – Raising Monomials to a Power

$(m^{5} n^{6} p^{3})(m^{2} n^{-1} p^{3})$	
Step 1. Multiply the m's	$(m^5)(m^{-2}) = m^3$
Step 2. Multiply the n's	$(n^6) (n^{-1}) = n^5$
Step 3. Multiply the p's	$(p^3) (p^3) = p^6$
Step 4. Put them together:	
$(m^5 n^6 p^3) (m^{-2} n^{-1} p^3) = m^3 n^5 p^6$	

Negative Powers of Monomials

• To multiply, divide or raise monomials to negative powers, use the rules for integers.

Examples – Raising Monomials to a Power

Dividing by a Monomial

To divide by a monomial, separate the given expression into the sum of two fractions and divide.

Dividing by a Monomial – Example

$$\frac{12x^2-8x}{4x}$$

$$\frac{-12x^2}{4x} + \frac{-8x}{4x} = -3x - 2$$

Dividing by a Monomial

To divide by a monomial, separate the given expression into the sum of two fractions and divide.

Dividing by a Monomial – Example

Greatest Common Factor

The greatest common factor (GCF) is the greatest number that is a factor of two or more given numbers.

In algebra, the GCF consists of the GCF of the coefficients multiplied by the GCF of the variables.

Greatest Common Factor – Example

$-6x^2y + 3xy^2$

- The GCF of the coefficients, 6 and 3, is 3.
- The GCF of the variables, x^2y and xy^2 is xy
- The product is *3xy*; this is the **GCF**.

Greatest Common Factor

The greatest common factor (GCF) is the greatest number that is a factor of two or more given numbers.

In algebra, the GCF consists of the GCF of the coefficients multiplied by the GCF of the variables.

Greatest Common Factor – Examples

Combining Like Terms II

- **Step 1.** Arrange the terms in descending order of exponents.
- **Step 2.** Combine the terms with like exponents and variables.

 $\begin{array}{l} Example - Combining \ Like \ Terms \ II \\ -3y^8 + 6y^9 - 4y^9 + 8y + 7y^8 - 2y \end{array}$

- Step 1. $6y^9 4y^9 3y^8 + 7y^8 + 8y 2y$
- Step 2. $2y^9 + 4y^8 + 6y$

Combining Like Terms II

- **Step 1.** Arrange the terms in descending order of exponents.
- **Step 2.** Combine the terms with like exponents and variables.

Examples – Combining Like Terms II

- **Step 1.** Set up the problem vertically in descending order of exponents.
- Step 2. Add the like terms.

Example – Adding Polynomials $-3y^8 + 6y^9 - 4y^9 + 8y + 7y^8 - 2y$

- Step 1. $6y^9 4y^9 3y^8 + 7y^8 + 8y 2y$
- Step 2. $2y^9 + 4y^8 + 6y$

Adding Polynomials

- **Step 1.** Set up the problem vertically in descending order of exponents.
- Step 2. Add the like terms.

Examples – Adding Polynomials

Subtracting Polynomials

- **Step 1.** Set up the problem vertically in descending order of exponents.
- **Step 2.** Change the signs of all the bottom terms. (the ones to be subtracted)

Step 3. Combine the like terms.

A short way of saying this is:

Change the bottom signs and add.

Example – Subtracting Polynomials $(-20x^2 + 30x^3 + 3 + 10x) - (30x^2 + 10x^3 + 2 - 20x)$

Step 1.	$30x^3 - 20 x^2 + 10x + 3.$ - $(10x^3 + 30x^2 - 20x + 2)$
Step 2.	$\begin{array}{r} 30x^3 - 20 \ x^2 + 10x + 3 \\ - \ 10x^3 - 30x^2 \ + \ 20x - 2 \end{array}$
Step 3.	$20x^3 - 50x^2 + 30x + 1$

Subtracting Polynomials

- **Step 1.** Set up the problem vertically in descending order of exponents.
- **Step 2.** Change the signs of all the bottom terms. (the ones to be subtracted)
- Step 3. Combine the like terms.
- A short way of saying this is:

Change the bottom signs and add.

Examples – Subtracting Polynomials

Missing Factors

If (a)(b) = c then $\frac{c}{a} = b$ and $\frac{c}{b} = a$.

Missing Factor problems can be set up as multiplication problems with one factor blank, or as a division problem. In either case, the answer is always the same.

Missing Factors – Example

Here are the two ways a problem can be written:

 $(3x-2)(?) = -3x^{2} + 2x$ a = (3x-2) b = (?) $c = -3x^{2} + 2x$ $\frac{c}{a} = b = \frac{-3x^{2} + 2x}{(3x-2)} = ?$

The missing factor is x.

Missing Factors

If (a)(b) = c then $\frac{c}{a} = b$ and $\frac{c}{b} = a$.

Missing Factor problems can be set up as multiplication problems with one factor blank, or as a division problem. In either case, the answer is always the same.

Missing Factors – Examples

Degree of a Polynomial

• The degree of a polynomial is highest degree (exponent) of any of its terms after it has been simplified.

Example – Degree of a Polynomial

$40x^3 + 10x^2 + 5x + 4$

- **3** is the largest exponent
- this is a third degree polynomial

Degree of a Polynomial

• The degree of a polynomial is highest degree (exponent) of any of its terms after it has been simplified.

Examples – Degree of a Polynomial

Multiplying Polynomials by -1

To multiply a polynomial by -1, change the sign of each term of the polynomial.

-1(3a+4b-2c) = -3a-4b+2c

Multiplying Polynomials by -1 – Examples

Multiply a Polynomial by a Variable

Step 1. Multiply each term of the polynomial by the variable.

Step 2. Combine the results.

Example – Multiply Polynomials by Monomials

 $x(2x^2 + 3x - 4)$

Step 1.	$x(2x^2) = 2x^3$ $x(3x) = 3x^2$ x(-4) = -4x
Step 2.	$2x^3 + 3x^2 - 4x$
Therefore:	$x(2x^2 + 3x - 4) = 2x^3 + 3x^2 - 4x$

Algebra Cheat
Sheet 37

Multiply a Polynomial by a Variable

- **Step 1.** Multiply each term of the polynomial by the variable.
- **Step 2.** Combine the results.

Examples – Multiply Polynomials by Monomials

Algebra Che Sheet 38	eat Multiply a Polynomial by an Integer	
Step 1. Multiply each term of the polynomial by the integer.		
Step 2. Combi	ne the results.	
Example –	Multiply a Polynomial by an Integer	
	$-2(2x^2 + 3x - 4)$	
Step 1.	$-2(2x^2) = 4x^2$	
	-2 (3x) = -6x	
	-2(-4) = 8	
Step 2.	$4x^2 - 6x + 8$	
Therefore:	$-2 (2x^2 + 3x - 4) = 4x^2 - 6x + 8$	

Multiply a Polynomial by an Integer

Step 1. Multiply each term of the polynomial by the integer.

Step 2. Combine the results.

Examples – Multiply a Polynomial by an Integer

Multiply a Polynomial by a Monomial

Step 1. Multiply each term of the polynomial by the monomial.

Step 2. Combine the results.

Example–Multiply Polynomials by Monomials

 $-2x(2x^2+3x-4)$

Step 1.	$-2x (2x^2) = -4x^3$
	$-2x (3x) = -6x^2$
	-2x(-4) = 8x
Step 2.	$-4x^3-6x^2+8x$
Therefore:	$-2x(2x^2 + 3x - 4) = -4x^3 - 6x^2 + 8x$
Algebra Cheat Sheet 39

Multiply a Polynomial by a Monomial

Step 1. Multiply each term of the polynomial by the monomial.

Step 2. Combine the results.

Examples – Multiply Polynomials by Monomials

Algebra Cheat Sheet 40

Multiplying Two Binomials

- The product of 2 binomials has 4 terms. To find these 4 terms, multiply each term in the 1st binomial with each term in the 2nd binomial. This process is called the FOIL method.
- The formula is: (a + b) (c + d) = ac + ad + bc + bd
- F = (ac) is the product of the *FIRST* terms
- O = (ad) is the product of the *OUTSIDE* terms
- I = (bc) is the product of the *INSIDE* terms
- L = (bd) is the product of the LAST terms

Example – Multiplying Two Binomials

(m +	3) ((m +	- 4)
------	------	------	------

Step 1.	Multiply first terms:	(m) (m) = m^2
Step 2.	Multiply outside terms:	(m) (4) = 4m
Step 3.	Multiply inside terms:	(3) (m) = 3m
Step 4.	Multiply last terms	(4) (3) = 12
Step 5.	Combine like terms:	$m^{2} + 4m + 3m + 12$ $m^{2} + 7m + 12$

Algebra Cheat Sheet 40

Multiplying Two Binomials

- The product of 2 binomials has 4 terms. To find these 4 terms, multiply each term in the 1st binomial with each term in the 2nd binomial. This process is called the FOIL method.
- The formula is: (a + b) (c + d) = ac + ad + bc + bd
- F = (ac) is the product of the *FIRST* terms
- O = (ad) is the product of the *OUTSIDE* terms
- I = (bc) is the product of the *INSIDE* terms
- L = (bd) is the product of the **LAST** terms

Examples – Multiplying Two Binomials