Sketching as a Tool for Numerical Linear Algebra

David WoodruffIBM Almaden

Massive data sets

Examples

- Internet traffic logs
- Financial data
- etc.

Algorithms

- Want nearly linear time or less
- Usually at the cost of a randomized approximation

Regression

 Statistical method to study dependencies between variables in the presence of noise.

Linear Regression

 Statistical method to study linear dependencies between variables in the presence of noise.

Linear Regression

 Statistical method to study linear dependencies between variables in the presence of noise.

Example

• Ohm's law $V = R \cdot I$

Example Regression

Linear Regression

 Statistical method to study linear dependencies between variables in the presence of noise.

Example

- Ohm's law $V = R \cdot I$
- Find linear function that best fits the data

Linear Regression

 Statistical method to study linear dependencies between variables in the presence of noise.

Standard Setting

- One measured variable b
- A set of predictor variables a1,..., ad
- Assumption:

$$b = x_0 + a_1 x_1 + ... + a_d x_d + \varepsilon$$

- ε is assumed to be noise and the x_i are model parameters we want to learn
- Can assume $x_0 = 0$
- Now consider n observations of b

Matrix form

Input: n×d-matrix A and a vector b=(b₁,..., b_n) n is the number of observations; d is the number of predictor variables

Output: x^{*} so that Ax* and b are close

Consider the over-constrained case, when n À d

Can assume that A has full column rank

Least Squares Method

- Find x* that minimizes $|Ax-b|_2^2 = \Sigma (b_i \langle A_{i^*}, x \rangle)^2$
- A_{i*} is i-th row of A
- Certain desirable statistical properties

Method of least absolute deviation (I₁ -regression)

- Find x* that minimizes $|Ax-b|_1 = \Sigma |b_i \langle A_{i^*}, x \rangle|$
- Cost is less sensitive to outliers than least squares

Geometry of regression

- We want to find an x that minimizes |Ax-b|p
- The product Ax can be written as

$$A_{1}x_{1} + A_{2}x_{2} + ... + A_{d}x_{d}$$

where A_{*i} is the i-th column of A

- This is a linear d-dimensional subspace
- The problem is equivalent to computing the point of the column space of A nearest to b in Ip-norm

Solving least squares regression via the normal equations

- How to find the solution x to min_x |Ax-b|₂?
- Normal Equations: $A^TAx = A^Tb$

•
$$x = (A^T A)^{-1} A^T b$$

Solving I₁ -regression via linear programming

• Minimize $(1,...,1) \cdot (\alpha_{+} + \alpha_{-})$

• Subject to:

$$A x + \alpha + - \alpha - = b$$
$$\alpha_{+}, \alpha - \geq 0$$

Generic linear programming gives poly(nd) time

Talk Outline

Sketching to speed up Least Squares Regression

Sketching to speed up Least Absolute Deviation (I_1) Regression

Sketching to speed up Low Rank Approximation

How to find an approximate solution x to $min_x |Ax-b|_2$?

Goal: output x' for which $|Ax'-b|_2 \cdot (1+\epsilon) \min_x |Ax-b|_2$ with high probability

Draw S from a k x n random family of matrices, for a value k << n

Compute S*A and S*b

Output the solution x' to $min_{x'} |(SA)x-(Sb)|_2$

How to choose the right sketching matrix S?

Recall: output the solution x' to $min_{x'} |(SA)x-(Sb)|_2$

Lots of matrices work

S is $d/\epsilon^2 x$ n matrix of i.i.d. Normal random variables

Computing S*A may be slow...

How to choose the right sketching matrix S? [S]

S is a Johnson Lindenstrauss Transform

 $S = P^*H^*D$

D is a diagonal matrix with +1, -1 on diagonals

H is the Hadamard transform

P just chooses a random (small) subset of rows of H*D

S*A can be computed much faster

Even faster sketching matrices [CW,MM,NN]

CountSketch matrix

Define k x n matrix S, for $k = d^2/\epsilon^2$

S is really sparse: single randomly chosen non-zero entry per column

Talk Outline

Sketching to speed up Least Squares Regression

Sketching to speed up Least Absolute Deviation (I₁) Regression

Sketching to speed up Low Rank Approximation

Sketching to solve I₁-regression

How to find an approximate solution x to $min_x |Ax-b|_1$?

Goal: output x' for which $|Ax'-b|_1 \cdot (1+\epsilon) \min_x |Ax-b|_1$ with high probability

Natural attempt: Draw S from a k x n random family of matrices, for a value k << n

Compute S*A and S*b

Output the solution x' to $min_{x'} |(SA)x-(Sb)|_1$

Turns out this does not work!

Sketching to solve I₁-regression [SW]

Why doesn't outputting the solution x' to $min_{x'}$ |(SA)x-(Sb)|₁ work?

Don't know of k x n matrices S with small k for which if x' is solution to $min_x |(SA)x-(Sb)|_1$ then $|Ax'-b|_1 \cdot (1+\epsilon) min_x |Ax-b|_1$ with high probability

Instead: can find an S so that $|Ax^{\prime}-b|_{1} \cdot (d \log d) \min_{x} |Ax-b|_{1}$

S is a matrix of i.i.d. Cauchy random variables

Cauchy random variables

They don't have a mean and have infinite variance

Ratio of two independent Normal random variables is Cauchy

Sketching to solve I₁-regression

How to find an approximate solution x to $min_x |Ax-b|_1$?

Want x' for which if x' is solution to $min_x |(SA)x-(Sb)|_1$, then $|Ax'-b|_1 \cdot (1+\epsilon) min_x |Ax-b|_1$ with high probability

For d log d x n matrix S of Cauchy random variables: $|Ax^{-b}|_{1} \cdot (d \log d) \min_{x} |Ax-b|_{1}$

For this "poor" solution x', let b' = Ax'-b

Might as well solve regression problem with A and b'

Sketching to solve I₁-regression

Main Idea: Compute a QR-factorization of S*A

Q has orthonormal columns and $Q^*R = S^*A$

A*R⁻¹ turns out to be a "well-conditioning" of original matrix A

Compute A^*R^{-1} and sample $d^{3.5}/\epsilon^2$ rows of $[A^*R^{-1}, b^2]$ where the i-th row is sampled proportional to its 1-norm

Solve regression problem on the (reweighted) samples

Sketching to solve I₁-regression [MM]

Most expensive operation is computing S*A where S is the matrix of i.i.d. Cauchy random variables

All other operations are in the "smaller space"

Can speed this up by choosing S as follows:

Further sketching improvements [WZ]

Can show you need a fewer number of sampled rows in later steps if instead choose S as follows

Instead of diagonal of Cauchy random variables, choose diagonal of reciprocals of exponential random variables

Talk Outline

Sketching to speed up Least Squares Regression

Sketching to speed up Least Absolute Deviation (I_1) Regression

Sketching to speed up Low Rank Approximation

A is an n x n matrix

Typically well-approximated by low rank matrix E.g., only high rank because of noise

Want to output a rank k matrix A', so that $|A-A'|_{F} \cdot (1+\epsilon) |A-A_k|_{F}$, w.h.p., where $A_k = \operatorname{argmin}_{rank \ k \ matrices \ B} |A-B|_{F}$

For matrix C, $|C|_{F} = (\Sigma_{i,j} C_{i,j}^{2})^{1/2}$

Solution to low-rank approximation is

- Given n x n input matrix A Most time-consuming
- Compute S*A using a sketching matrix S with k << n step is computing S*A rows. S*A takes random line a computing of fows A

A S can be matrix of i.i.d. Normals S can be a Fast Johnson Lindenstrauss Matrix S can be a CountSketch matrix SA Project rows of A onto SA approximation to points inside of SA. Caveat: projecting the points onto SA is slow [CW]

Current algorithm:

- 1. Compute S*A (easy)
- 2. Project each of the rows onto S*A
- 3. Find best rank-k approximation of projected points inside of rowspace of S*A (easy)

Bottleneck is step 2

Turns out if you compute (AR)(S*A*R)⁻(SA), this is a good low-rank approximation

Uses generalized regression: $min_X |X(SA)-A|_{F^2}$

Conclusion

Gave fast sketching-based algorithms for numerical linear algebra problems

Least Squares Regression

Least Absolute Deviation (I1) Regression

Low Rank Approximation

Sketching also provides "dimensionality reduction"

Communication-efficient solutions for these problems