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Massive data sets

Examples
 Internet traffic logs
 Financial data
 etc.

Algorithms
 Want nearly linear time or less 
 Usually at the cost of a randomized approximation
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Regression analysis

Regression
 Statistical method to study dependencies between 

variables in the presence of noise.
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Regression analysis

Linear Regression
 Statistical method to study linear dependencies 

between variables in the presence of noise.

Example
 Ohm's law V = R ∙ I 
 Find linear function that 
    best fits the data
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Regression analysis

Linear Regression
 Statistical method to study linear dependencies between

variables in the presence of noise.

Standard Setting
 One measured variable b
 A set of predictor variables a  ,…, a
 Assumption:

                         b  = x  + a   x  + … + a    x   + 
 is assumed to be noise and the xi are model 

parameters we want to learn
 Can assume x0 = 0
 Now consider n observations of b
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Regression analysis

Matrix form
Input:  nd-matrix A and a vector b=(b1,…, bn)

n is the number of observations; d is the number of  
predictor variables

Output: x* so that Ax* and b are close

Consider the over-constrained case, when n À d

 Can assume that A has full column rank
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Regression analysis

Least Squares Method
 Find x* that minimizes |Ax-b|22 =  (bi – <Ai*, x>)²
 Ai* is i-th row of A
 Certain desirable statistical properties

Method of least absolute deviation (l1 -regression)
 Find x* that minimizes |Ax-b|1 =  |bi – <Ai*, x>|
 Cost is less sensitive to outliers than least squares
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Regression analysis

Geometry of regression
 We want to find an x that minimizes |Ax-b|p 
 The product Ax can be written as

                                A*1x1 + A*2x2 + ... + A*dxd

      where A*i is the i-th column of A

 This is a linear d-dimensional subspace 
 The problem is equivalent to computing the point of the 

column space of A nearest to b in lp-norm
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Regression analysis

Solving least squares regression via the normal equations

 How to find the solution x to minx |Ax-b|2 ?

 Normal Equations: ATAx = ATb

 x = (ATA)-1 AT b 
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Regression analysis

Solving l1 -regression via linear programming

 Minimize (1,…,1) · (  +    )
 Subject to: 
                           A x  = b
 , ≥ 0

 Generic linear programming gives poly(nd) time

+ -

+ -

+ -
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Talk Outline 

Sketching to speed up Least Squares Regression

Sketching to speed up Least Absolute Deviation (l1) 
Regression

Sketching to speed up Low Rank Approximation
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Sketching to solve least squares regression

How to find an approximate solution x to minx |Ax-b|2 ?

Goal: output x‘ for which |Ax‘-b|2 · (1+ε) minx |Ax-b|2 with 
high probability

Draw S from a k x n random family of matrices, for a value 
k << n

Compute S*A and S*b

Output the solution x‘ to minx‘ |(SA)x-(Sb)|2
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How to choose the right sketching matrix S?

Recall: output the solution x‘ to minx‘ |(SA)x-(Sb)|2

Lots of matrices work

S is d/ε2 x n matrix of i.i.d. Normal random variables

Computing S*A may be slow…
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How to choose the right sketching matrix S? [S] 

S is a Johnson Lindenstrauss Transform

S = P*H*D

D is a diagonal matrix with +1, -1 on diagonals

H is the Hadamard transform

P just chooses a random (small) subset of rows of H*D

S*A can be computed much faster
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Even faster sketching matrices [CW,MM,NN] 

[ [0 0 1 0  0 1  0 0 
1 0 0 0  0 0  0 0
0 0 0 -1 1 0 -1 0
0-1 0 0  0 0  0 1

CountSketch matrix

Define k x n matrix S, for k = d2/ε2

S is really sparse: single randomly chosen non-zero entry 
per column

Surprisingly, 

this works!



18

Talk Outline 
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Sketching to speed up Least Absolute Deviation (l1) 
Regression

Sketching to speed up Low Rank Approximation
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Sketching to solve l1-regression 

How to find an approximate solution x to minx |Ax-b|1 ?

Goal: output x‘ for which |Ax‘-b|1 · (1+ε) minx |Ax-b|1 with 
high probability

Natural attempt: Draw S from a k x n random family of 
matrices, for a value k << n

Compute S*A and S*b

Output the solution x‘ to minx‘ |(SA)x-(Sb)|1

Turns out this does not work!
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Sketching to solve l1-regression [SW] 

Why doesn’t outputting the solution x‘ to minx‘ |(SA)x-
(Sb)|1 work?

Don‘t know of k x n matrices S with small k for which if
x‘ is solution to minx |(SA)x-(Sb)|1 then
|Ax‘-b|1 · (1+ε) minx |Ax-b|1 
    with high probability

Instead: can find an S so that  
|Ax‘-b|1 · (d log d) minx |Ax-b|1

S is a matrix of i.i.d. Cauchy random variables
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Cauchy random variables 

Cauchy random variables not as nice as Normal 
(Gaussian) random variables

They don’t have a mean and have infinite variance

Ratio of two independent Normal random variables is 
Cauchy
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Sketching to solve l1-regression 

How to find an approximate solution x to minx |Ax-b|1 ?

Want x‘ for which if x‘ is solution to minx |(SA)x-(Sb)|1 , then
|Ax‘-b|1 · (1+ε) minx |Ax-b|1 with high probability

For d log d x n matrix S of Cauchy random variables:  
|Ax‘-b|1 · (d log d) minx |Ax-b|1

For this “poor” solution x’, let b’ = Ax’-b

Might as well solve regression problem with A and b’
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Sketching to solve l1-regression 

Main Idea: Compute a QR-factorization of S*A
                   
 Q has orthonormal columns and Q*R = S*A

A*R-1 turns out to be a “well-conditioning” of original matrix
A

Compute A*R-1 and sample d3.5/ε2 rows of [A*R-1 , b’] 
where the i-th row is sampled proportional to its 1-norm

Solve regression problem on the (reweighted) samples
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Sketching to solve l1-regression [MM]

Most expensive operation is computing S*A where S is the
matrix of i.i.d. Cauchy random variables

All other operations are in the “smaller space”

Can speed this up by choosing S as follows:

[ [0 0 1 0  0 1  0 0 
1 0 0 0  0 0  0 0
0 0 0 -1 1 0 -1 0
0-1 0 0  0 0  0 1

¢

[[C1
   C2
       C3
           …
              Cn
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Further sketching improvements [WZ]  

Can show you need a fewer number of sampled rows in 
later steps if instead choose S as follows

Instead of diagonal of Cauchy random variables, choose 
diagonal of reciprocals of exponential random variables

[ [0 0 1 0  0 1  0 0 
1 0 0 0  0 0  0 0
0 0 0 -1 1 0 -1 0
0-1 0 0  0 0  0 1

¢

[[1/E1
   1/E2
       1/E3
           …
              1/En
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Talk Outline 

Sketching to speed up Least Squares Regression

Sketching to speed up Least Absolute Deviation (l1) 
Regression

Sketching to speed up Low Rank Approximation
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Low rank approximation 

A is an n x n matrix

Typically well-approximated by low rank matrix
E.g., only high rank because of noise

Want to output a rank k matrix A’, so that
|A-A’|F · (1+ε) |A-Ak|F,

    w.h.p., where Ak = argminrank k matrices B |A-B|F

For matrix C, |C|F = (Σi,j Ci,j2)1/2
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Solution to low-rank approximation [S]

 Given n x n input matrix A
 Compute S*A using a sketching matrix S with k << n 

rows. S*A takes random linear combinations of rows of A

SA

A

Project rows of A onto SA, then find best rank-k 
approximation to points inside of SA. 

Most time-consuming 

step is computing S*A

 S can be matrix of i.i.d. Normals

 S can be a Fast Johnson Lindenstrauss 
Matrix

 S can be a CountSketch matrix
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Caveat: projecting the points onto SA is slow [CW]

Current algorithm: 
1. Compute S*A (easy)
2. Project each of the rows onto S*A
3. Find best rank-k approximation of projected points 

inside of rowspace of S*A (easy)

Bottleneck is step 2 

Turns out if you compute (AR)(S*A*R)-(SA), this is a good 
low-rank approximation

Uses generalized regression: minX |X(SA)-A|F2
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Conclusion 

Gave fast sketching-based algorithms for numerical linear 
algebra problems

Least Squares Regression

Least Absolute Deviation (l1) Regression

Low Rank Approximation

Sketching also provides “dimensionality reduction”

Communication-efficient solutions for these problems


