Class:	ALGEBRA 2			
Teacher:	DAILY	HERN	LUNETTA	PEREIRA
Period:	1, 2	1	3, 5, 6	3, 4
Assignment:	WEEK 1			

WEEK	ASSIGNMENT	DATE
	I can add complex numbers. (Practice, do as many as you wish. Answers provided.)	4/20
	Are You Ready? I can add complex numbers. (Required, complete after you have practiced.)	
	I can subtract complex numbers. (Practice, do as many as you wish. Answers provided.)	4/21
	Are You Ready? I can subtract complex numbers. (Required, complete after you have practiced.)	
	I can multiply complex numbers. (Practice, do as many as you wish. Answers provided.)	4/22
	Are You Ready? I can multiply complex numbers. (Required, complete after you have practiced.)	
	I can simplify complex expressions. (Practice, do as many as you wish. Answers provided.)	4/23
	Are You Ready? I can simplify complex expressions. (Required, complete after you have practiced.)	
	N-CN.2 Standard Assessment (Required, complete after you are ready.)	4/24

INSTRUCTION

I can add complex numbers

An example of a complex number is 3 - 4i. Complex numbers have the form a + bi, where a is called the real part and b is the imaginary part.

Think about adding like terms from Algebra 1. In the problem (3x + 4) + (x + 5) you would see the 3x and x are like, and the 4 and 5 are like. When you simplify you would get (3x + x) and (4 + 5) for a final answer of 5x + 9.

Simplifying the addition of two complex numbers would work the same way:

$$(2+5i) + (6+i) = (2+6) + (5i+i) = 8+6i$$

I can subtract complex numbers

Subtracting works just the same as adding, except you must pay close attention to the subtraction sign. Forgetting that subtraction sign will be your rookie mistake.

$$(2+5i) - (6+i) = (2-6) + (5i-i) = -4 + 4i$$

Notice that as you are gathering the like terms from each complex number you take a copy of that subtraction sign with you. Don't forget that subtracting a negative is the same as addition, as in this problem:

$$(1+i) - (3-4i) = (1-3) + (i - (-4i)) = -2 + 5i$$

I can multiply complex numbers

Being organized is key when multiplying complex numbers, so use the box method and you will be less likely to make a mistake.

$$(6-i)(2+3i) = \begin{array}{ccc} 2 & 3i \\ 12 & 18i \\ -i & -2i & -3i^2 \end{array} = 12 + 16i - 3i^2$$

We have some more work to do when simplifying the i^2 , but that will be in the next lesson.

I can simplify complex expressions

What is *i*, anyway? It is defined as the square root of -1, like this: $i = \sqrt{-1}$. No wonder we call it an imaginary number!

If *i* is the square root of -1, then i^2 must be $i \cdot i$, which is $\sqrt{-1} \cdot \sqrt{-1}$. But that's just -1! So, $i^2 = -1$.

There are two things to watch out for when simplifying a complex expression: 1) i is not allowed to remain in the denominator of a fraction, and 2) $i^2 = -1$. To fix an i in the denominator you must "rationalize the denominator". That's a fancy way of saying you must multiply by 1. Here's an example.

$$\frac{3+2i}{2-4i} = \frac{3+2i}{2-4i} \cdot \frac{2+4i}{2+4i} = \frac{6+16i+8i^2}{4-0i-16i^2} = \frac{6+16i-8}{4+16} = \frac{-2+16i}{20} = \frac{-1+8i}{10}$$

In step2, notice how the 1 is written as a fraction where the numerator and denominator are the same as the original denominator but with the middle sign switched? That's called the conjugate. The conjugate of 2 - 4i is 2 + 4i. The conjugate of 3 + i would be 3 - i. Get to step 3 by using the box method (twice!). In step 4 the i^2 changes the sign of its coefficient. Do you see why?

$$8i^2 = 8 \cdot i^2 = 8 \cdot -1 = -8$$

For step 5 combine like terms. In the last step the -2, 16, and 20 can be reduced since they are all even.

I can add complex numbers © 2020 Kuta Software LLC. All rights	Name	ID: 1
	Date	Period
Simplify.		
1) $(-1+7i)+(5+4i)$	2) $(-2-5i) + (3-5i)$	
3) $(1+3i) + (-6-3i)$	4) $(-6+7i)+(5+6i)$	
5) $(-6-i) + (1-5i)$	6) $(-4i) + (4i) + (5+6i)$	
7) $(-6+2i)+(-5-6i)$	8) $(5+3i) + (-2-5i)$	
9) $(7+i) + (-7+6i)$	10) $(-7 + 7i) + (7i) + 8$	
11) $(-7-2i) + (1-8i)$	12) $(3-2i)+(1-4i)$	
13) $-8 + 2 + (7 - 5i)$	14) $(3+3i)+(1-8i)$	
15) $(-7+5i) + (-4+5i)$	16) $-5 + (-2 + 4i) + (4i)$	
17) $(-3-2i)+(4-3i)$	18) $(-8+i)+(5+5i)$	
19) $(i) + (4 - 4i) + (i)$	20) $(-5+8i)+(5-6i)$	

1) $4 + 11i$	2) $1 - 10i$	3) -5	4) $-1 + 13i$
5) $-5 - 6i$	6) $5 + 6i$	7) –11 – 4 <i>i</i>	8) 3 – 2 <i>i</i>
9) 7 <i>i</i>	10) $1 + 14i$	11) <i>-</i> 6 <i>-</i> 10 <i>i</i>	12) 4 – 6 <i>i</i>
13) $1-5i$	14) $4-5i$	15) -11 + 10i	16) $-7 + 8i$
17) 1 – 5 <i>i</i>	18) $-3 + 6i$	19) $4-2i$	20) 2 <i>i</i>

 $^{\odot}$ 2020 Kuta Software LLC. All rights reserved. Made with Infinite Algebra 2.

I can subtract complex numbers © 2020 Kuta Software LLC. All rights	Namereserved.	ID: 1
	Date	Period
Simplify.		
1) $(-4 - 7i) - (-4 + 3i)$	2) $(-2+i) - (-3-i)$	
3) $(-1-i) - (-3-8i)$	4) $(4+4i) - (-7-7i)$	
5) $(3-i) - (8+3i)$	6) $(8i) + (i) - (-6 - 3i)$	
7) $(1-4i)-(3i)+6$	8) $(2+4i) - (-7+2i)$	
9) $(-5+6i) - 4 - 5$	10) $(3-7i) - (7+7i)$	
11) $(-3+3i) - (-6+7i)$	12) $(3-4i) - (7+7i)$	
13) $-6 - (-1 - 2i) - 7$	14) 7 - $(6 - 6i) - (7i)$	
15) $(-6-5i) + (7+i)$	16) $(-7-6i) - (8-4i)$	
17) $(5+5i) - (-7-i)$	18) $(7-5i) - (2i) - (7i)$	
19) $(-6-7i) - (5+2i)$	20) $-7 - (6i) - (3 - 3i)$	

1) –10 <i>i</i>	2) $1 + 2i$	3) $2 + 7i$	4) 11 + 11 <i>i</i>
5) $-5 - 4i$	6) $6 + 12i$	7) 7 – 7 <i>i</i>	8) $9 + 2i$
9) $-14 + 6i$	10) -4 - 14 <i>i</i>	11) $3 - 4i$	12) <i>–</i> 4 – 11 <i>i</i>
13) $-12 + 2i$	14) $1-i$	15) $1-4i$	16) $-15 - 2i$
17) 12 + 6 <i>i</i>	18) 7 – 14 <i>i</i>	19) –11 – 9 <i>i</i>	20) $-10 - 3i$

© 2020 Kuta Software LLC. All rights reserved. Made with Infinite Algebra 2.

I can multiply complex numbers © 2020 Kuta Software LLC. All rights	Namereserved.	ID: 1
	Date	Period
Simplify.		
1) $(-5-8i)(1+7i)$	2) $(-3-4i)(4+2i)$	
3) $(6+8i)^2$	4) $(-6i)(-7i)(-4-2i)$	
5) $(i)(3i)(-1-7i)$	6) $(-2+3i)(-7-5i)$	
7) $(-1+6i)^2$	8) $(-7-3i)(8+6i)$	
9) $(7+2i)(4+2i)$	10) $4(2i)(-4-7i)$	
11) $(6-5i)^2$	12) $(6-3i)(2+7i)$	
13) $(3-2i)(6-8i)$	14) $(-8i)(-2i)(-5+8i)$	
15) $(-5+6i)^2$	16) $(i)(i)(3+6i)$	
17) $8(-3i)(-2+6i)$	18) $(-1+5i)(-3-5i)$	
19) $(5i)(3i)(-8-7i)$	20) $(-6+4i)(6+i)$	

1) –10 <i>i</i>	2) $1 + 2i$	3) $2 + 7i$	4) 11 + 11 <i>i</i>
5) $-5-4i$	6) $6 + 12i$	7) 7 – 7 <i>i</i>	8) $9 + 2i$
9) $-14 + 6i$	10) $-4 - 14i$	11) $3 - 4i$	12) <i>–</i> 4 – 11 <i>i</i>
13) $-12 + 2i$	14) $1-i$	15) $1-4i$	16) $-15 - 2i$
17) $12 + 6i$	18) $7 - 14i$	19) $-11 - 9i$	20) $-10 - 3i$

© 2020 Kuta Software LLC. All rights reserved. Made with Infinite Algebra 2.

I can simplify comple		Name	ID: 1
© 2020 Kuta Software L	LC. All rights r	eserved. Date	Period
Simplify.			
1) $\frac{9}{-8i}$		2) $\frac{-7+4i}{-10i}$	
3) $\frac{-9-4i}{4i}$		4) $\frac{-3+3i}{10i}$	
5) $\frac{9}{-9i}$		6) $\frac{10}{-5i}$	
7) $\frac{10+3i}{i}$		8) $(5-6i)(8-8i)$	
9) $(7+6i)^2$		10) $(-2-7i)^2$	
11) $(5+8i)(-5+5i)$		12) $(8-8i)(1+4i)$	
13) $-3(2i)(-1+6i)$		14) $\frac{7-6i}{6+2i}$	
15) $\frac{1-4i}{9-5i}$		16) $\frac{-10+i}{-9-4i}$	
17) $\frac{7i}{-9-i}$		18) $\frac{-4-5i}{1-6i}$	
19) $\frac{2-10i}{6-8i}$		20) $\frac{6i}{8+3i}$	
1) $\frac{9i}{8}$ 5) <i>i</i> 9) 13 + 84 <i>i</i> 13) 36 + 6 <i>i</i> 17) $^{-63i-7}$	2) $\frac{-7i-4}{10}$ 6) $2i$ 10) $-45 + 28i$ 14) $\frac{3-5i}{4}$ 18) $\frac{26-29i}{37}$	3) $\frac{9i-4}{4}$ 7) $-10i+3$ 11) $-65-15i$ 15) $\frac{29-31i}{106}$ 19) $\frac{23-11i}{25}$	4) $\frac{3i+3}{10}$ 8) $-8-88i$ 12) $40+24i$ 16) $\frac{86-49i}{97}$ 20) $\frac{48i+18}{10}$
17) $\frac{-63i-7}{82}$	37	$\frac{15}{25}$	20) $\frac{48i+18}{73}$

 $^{\odot}$ 2020 Kuta Software LLC. All rights reserved. Made with Infinite Algebra 2.

Student ______ Teacher ______

Class ALGEBRA 2 Period _____

*** REMOVE FROM PACKET, TURN IN *** ***Attach additional binder paper as needed. *** ***Make sure it is clearly labeled. ***

Aro V		n add complex numbers.	Aro V		n subtract complex numbers.
Aren	•		Aren	-	· · · · · · · · ·
1	Simplify.	(2-3i) + (2+8i)	1	Simplify.	(5+6i) - (-8-5i)
2	Simplify.	(-7-5i) + (-3+5i)	2	Simplify.	(5+5i) - (7-6i)
3	Simplify.	(4-8i) + (1+5i)	3	Simplify.	(4-4i) - (3+5i)
4	Simplify.	(-1+4i) + (-1-2i)	4	Simplify.	(7+5i) - (-3-3i)
5	Simplify.	(-4 - 5i) + (-7 - 8i)	5	Simplify.	(7-5i) - (-7-7i)
6	Simplify.	(6+2i) + (-6+5i)	6	Simplify.	(-5+i) - (1+4i)
Aro	You Poody2 Lco	n multiply complex numbers.	Aro		n simplify complex expressions.
	-	(6+5i)(2-3i)	Alei	ou Reauy: I ca	-8
1	Simplify.	(0 + 0i)(2 - 0i)	1	Simplify.	$\overline{-10i}$
2	Simplify.	$(3+i)\left(7-2i\right)$	2	Simplify.	$\frac{-9+7i}{-2i}$
3	Simplify.	(5+6i)(7+2i)	3	Simplify.	$\frac{8}{-5+i}$
4	Simplify.	(2-8i)(8+4i)	4	Simplify.	$\frac{8+10i}{1+5i}$
4	Simplify. Simplify.	(2-8i)(8+4i) (8-4i)(1-3i)	4		
				Simplify.	1+5i

Student			
Teacher			
Class	ALGEBRA 2	Period	

Algebra 2 U2

*** REMOVE FROM PACKET, TURN IN *** ***Attach additional binder paper as needed. *** ***Make sure it is clearly labeled. ***

N-CN.2 Standard Assessment

- ${\bf 1} \qquad {\rm Simplify}. \qquad \qquad \left(-6+4i\right)+\left(-4+i\right)$
- **2** Explain your reasoning for Question 1.

3 Simplify.
$$(-3-8i) - (-8+6i)$$

4 Explain your reasoning for Question 3.

5 Simplify.
$$(-8-2i)(4-4i)$$

6 Explain your reasoning for Question 5.

7 Simplify.
$$(3+i)(1-7i)$$

8 Explain your reasoning for Question 7.

9 Simplify.
$$\frac{-10+9i}{-9i}$$

10 Explain your reasoning for Question 9.

11 Simplify.
$$\frac{4i}{-1-9i}$$

12 Explain your reasoning for Question 11.