9-5 GRAPHS OF EXPENSE AND REVENUE FUNCTIONS

Write, graph and interpret the expense function.Write, graph and interpret the revenue function.Identify the points of intersection of the expense and revenue functions.

Identify breakeven points, and explain them in the context of the problem.

Factor a quadratic using the method of completing the square.

Robert Gerver | Richard Sgroi

- nonlinear function
- second-degree equation
- quadratic equation
- parabola
- leading coefficient
- minimum
- vertex
- maximum

Robert Gerver | Richard Sgroi

- axis of symmetry
- roots
- zeros
- quadratic formula
- perfect square trinomial
- completing the square

Slide 2

How can expense and revenue be graphed?

- How does price contribute to consumer demand?
- Name some other factors that might also play a role in the quantity of a product consumers purchase.
- Why does a non-vertical line have slope but a nonlinear function does not?

Slide 3

Parabola:

Robert Gerver | Richard Sgroi

Parabola: quadradic equation

Robert Gerver | Richard Sgroi

Parabola: quadradic equation; y=ax²+ bx + c

Robert Gerver | Richard Sgroi

Parabola with a positive leading coefficient:

Robert Gerver | Richard Sgroi

Parabola with a positive leading coefficient: the number in front of the first term = +a = up

Robert Gerver | Richard Sgroi

© 2018 Cengage Learning, Inc. All rights reserved.

Slide 8

Financial Algebra^{Second Edition} **Parabola with a negative leading coefficient:**

CENGAGE Learning

Slide 9

Robert Gerver | Richard Sgroi

Financial Algebra Second Edition Parabola with a negative leading coefficient: -a = down

Slide 10 CENGAGE Learning

Robert Gerver | Richard Sgroi © 2018 Cengage Learning, Inc. All rights reserved.

Roots: AKA

Robert Gerver | Richard Sgroi

Roots: AKA zeros,

Robert Gerver | Richard Sgroi

<u>Roots</u>: AKA zeros, solutions,

Robert Gerver | Richard Sgroi

<u>Roots</u>: AKA zeros, solutions, x-intercepts

Robert Gerver | Richard Sgroi

<u>Roots</u>: AKA zeros, solutions, x-intercepts

Ways to Find the Roots/Zeros:

Robert Gerver | Richard Sgroi

<u>Roots</u>: AKA zeros, solutions, x-intercepts

Ways to Find the Roots/Zeros:

1. Factoring

Robert Gerver | Richard Sgroi

<u>Roots</u>: AKA zeros, solutions, x-intercepts

<u>Roots</u>: AKA zeros, solutions, x-intercepts

Ways to Find the Roots/Zeros:

- **1.** Factoring
- 2. Completing the Square

<u>Roots</u>: AKA zeros, solutions, x-intercepts

Ways to Find the Roots/Zeros:

- **1.** Factoring
- **2.** Completing the Square \rightarrow (x +)² =

<u>Roots</u>: AKA zeros, solutions, x-intercepts

Ways to Find the Roots/Zeros:

1. Factoring

Robert Gerver | Richard Sgroi

- 2. Completing the Square
- 3. Quadratic Formula

Watch this and sing along! ;)

https://www.youtube.com/watch?v=O8ezDEk3qCg

<u>Roots</u>: AKA zeros, solutions, x-intercepts

Ways to Find the Roots/Zeros:

1. Factoring

Robert Gerver | Richard Sgroi

- **2.** Completing the Square
- **3.** Quadratic Formula:

$$=$$
 $- \pm \sqrt{-}$

A. Find the roots to $x^2 + 6x = 0$ using all 3 methods. 1. Factoring:

Robert Gerver | Richard Sgroi

A. Find the roots to $x^2 + 6x = 0$ using all 3 methods. 1. Factoring:

Robert Gerver | Richard Sgroi

A. Find the roots to $x^2 + 6x = 0$ using all 3 methods.

2. Completing the Square:

Robert Gerver | Richard Sgroi

A. Find the roots to x² + 6x = 0 using all 3 methods. 2. Completing the Square:

+ $\chi^2 + 6\chi +$ 9 = $\chi^{2} + 6\chi + 9 = 0 + 9$ -3+3=-3+3,-3-3=0,-6

Robert Gerver | Richard Sgroi

© 2018 Cengage Learning, Inc. All rights reserved.

Slide 27

Learning

A. Find the roots to $x^2 + 6x = 0$ using all 3 methods.

3. Quadratic Formula:

Robert Gerver | Richard Sgroi

- A. Find the roots to $x^2 + 6x = 0$ using all 3 methods. $Ax^2 + bx + C = 0$
- 3. Quadratic Formula:

X=-bt.

Robert Gerver | Richard Sgroi

 $|X^2 + 6X + 0 = 0$ a=1 b=6 c=0

= 0. -10

$$= -6 \pm \sqrt{(-6)^2 - 4(+)(0)}$$

2(1)

 $= -6 \pm \sqrt{36} = -6$

Slide 29 Learning

© 2018 Cengage Learning, Inc. All rights reserved.

 -6 ± 6 U2=2