Algebra 2 Guideline for Week 2 April, 27 – May, 1

There are 5 Review assignments to complete this week. You can either write on binder paper or print worksheets. Make sure to

- write very neat
- show all the work
- write your name in pen

After you are done with each assignment, open it on schoology.com, take a photo and submit. Due date for these assignments is May 8th, but I strongly recommend completing and submitting your assignments daily.

Please, message me on schoology if you have questions and need help. Also, there are will be live Q&A meetings with me through Zoom scheduled on schoology if you need an additional help.

April,27

Assignment HMH 5.1 Practice A/B "Graphing Cubic Functions"

Complete assignment and submit on schoology.

Use the following resources to review:

- Notes from our class
- On-line HMH interactive lesson 5.1
- HMH 5.1 Reteach page (attached)

April,28

Assignment HMH 5.2 Practice A/B "Graphing Polynomials, Odd and Even, Leading coefficients and x-intercepts"

Complete assignment and submit on schoology.

Use the following resources to review:

- Notes from our class
- On-line HMH interactive lesson 5.2
- HMH 5.2 Reteach page (attached)

April,29

Assignment HMH 6.1 Practice A/B "Adding and Subtracting Polynomials"

Complete assignment on paper, take a photo and submit on schoology.

Use the following resources to review:

- Notes from our class
- On-line HMH interactive lesson 6.1
- HMH 6.1 Reteach page (attached)

April,30

Assignment HMH 6.2 Practice A/B "Multiplying Polynomials"

Complete assignment on paper, take a photo and submit on schoology.

Use the following resources to review:

- Notes from our class
- On-line HMH interactive lesson 6.2
- HMH 6.2 Reteach page (attached)

May,1

Assignment HMH 6.4 Practice A/B "Factoring Polynomials"

Complete assignment on paper, take a photo and submit on schoology.

Use the following resources to review:

- Notes from our class
- On-line HMH interactive lesson 6.4
- HMH 6.4 Reteach page (attached)

5-1 Graphing Cubic Functions *Reteach*

The graph of the parent function $f(x) = x^3$ can be transformed into $g(x) = a \left(\frac{1}{b}(x-h)\right)^3 + k$.

Each parameter (*a*, *b*, *h*, and *k*) affects the transformation of the function:

а	a < 1	∣a∣ > 1		a<0
	Vertical	Vertical		Reflection
	Compression	Stretch		over <i>x</i> -axis
b	<i> b</i> < 1	b > 1		<i>b</i> <0
	Horizontal	Horizontal		Reflection
	Compression	Stretch		over <i>y</i> -axis
h	<i>h</i> < 0	h<0		h>0
	Translate Le	Franslate Left h		nslate Right h
k	k < 0 Translate Down k		k > 0 Translate Up k	

By using reference points, a graph of the transformed function can be created.

$f(\mathbf{x})$	$) = X^{3}$	$g(x) = a \left(\frac{1}{b}(x-h)\right)^3 + $		
x	у	x	У	
-1	-1	-b+h	-a+k	
0	0	h	k	
1	1	b+h	a+k	

Example Identify the transformations that produce the graph of $g(x) = 2(x+1)^3 - 2$. Then, graph g(x) by applying the transformations to the reference points (-1, -1), (0, 0), and (1, 1).

Transformations Reference Points Graph a = 2 Original Х V Vertical Stretch Points by 2 b=12 (-1, -1) -1 + (-1) = -2 -2 + (-2) = -4No Horizontal (0, 0)Х Stretch or -2-4 Compression (-1, -2)h = -1(0, 0)-1 -2 Translate Left 1 k = -21 + (-1) = 02 + (-2) = 0(1, 1) Translate Down 2

I

LESSON **Graphing Cubic Functions** 5-1 Practice and Problem Solving: A/B

Calculate the reference points for each transformation of the parent function $f(x) = x^3$. Then graph the transformation. (The graph of the parent function is shown.)

1. $g(x) = (x-3)^3 + 2$ 2 X

Write the equation of the cubic function whose graph is shown.

Solve.

- 5. The graph of $f(x) = x^3$ is reflected across the x-axis. The graph is then translated 11 units up and 7 units to the left. Write the equation of the transformed function.
- 6. The graph of $f(x) = x^3$ is stretched vertically by a factor of 6. The graph is then translated 9 units to the right and 3 units down. Write the equation of the transformed function.

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.

0

-2

-4

Graphing Polynomial Functions LESSON 5-2 Reteach

To sketch $f(x) = a(x - x_1)(x - x_2)...(x - x_n)$:

<i>n</i> = degree <i>a</i> = constant factor	End Behavior	Graph Description	x-intercepts	
<i>n</i> odd <i>a</i> > 0	as $x \to -\infty$, $f(x) \to -\infty$ as $x \to +\infty$, $f(x) \to +\infty$	Uphill	$(x - x_1)^{odd}$	
<i>n</i> odd <i>a</i> < 0	as $x \to -\infty$, $f(x) \to +\infty$ as $x \to +\infty$, $f(x) \to -\infty$	Downhill	Crosses <i>x</i> -axis at x_1	
<i>n</i> even <i>a</i> > 0	as $x \to -\infty$, $f(x) \to +\infty$ as $x \to +\infty$, $f(x) \to +\infty$	Opens up	$(x - x_2)^{even}$	
<i>n</i> even <i>a</i> < 0	as $x \to -\infty$, $f(x) \to -\infty$ as $x \to +\infty$, $f(x) \to -\infty$	Opens down	Tangent to <i>x</i> -axis at x_2	

Example Sketch the graph of the polynomial function $f(x) = \left(-\frac{1}{5}\right)(x+3)(x-1)^3$.

n = 4 (even), $a = -\frac{1}{5}$ (a < 0) \rightarrow Opens down

(x+3) raised to an odd power \rightarrow crosses at x=-3

(x-1) raised to an odd power \rightarrow crosses at x=1

Graphing Polynomial Functions

Practice and Problem Solving: A/B

Identify whether the function graphed has an odd or even degree and a positive or negative leading coefficient.

Use a graphing calculator to determine the number of turning points and the number and type (global or local) of any maximum or minimum values.

4. $f(x) = x(x-4)^2$ 5. $f(x) = -x^2(x-2)(x+1)$

Graph the function. State the end behavior, *x*-intercepts, and intervals where the function is above or below the *x*-axis.

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.

1.	Write in standard form.		2 <i>x</i> ⁴	+5 <i>x</i> ³	$-X^2$	-10 <i>x</i>	
2.	Align like terms and add the opposite. +	-	X ⁴		$-4x^{2}$	+2 <i>x</i>	-1
	Add.		3 <i>x</i> ⁴	+5 <i>x</i> ³	$-5x^{2}$	-8 <i>x</i>	-1

Name		Date		Class
6-1 -	Adding and Subtrac	<u> </u>	omials	
F	Practice and Problem Se	olving: A/B		
Identify the	e degree of each monomial.			
1. 6 <i>x</i> ²	2. 3p	³ <i>m</i> ⁴	3.	$2x^8y^3$
	ich polynomial in standard f		tify the leadir	ng
	t, degree, and number of ter $-4x^3 + x^2$	ms.		
5. $x^2 - 3$	$+2x^{5}+7x^{4}-12x$			
Add or sul	btract. Write your answer in	standard form.		
6. (2 <i>x</i> ² –	$(2x+6)+(11x^3-x^2-2+5x)$	7. (<i>x</i>	$(3x^{3} - 8) - (3x^{3} - 6)$	$6x - 4 + 9x^2$)
8. (5 <i>x</i> ⁴ +	x^{2})+(7+9 x^{2} -2 x^{4} + x^{3})	9. (1	$(2x^2 + x) - (6 -$	$9x^2 + x^7 - 8x$)

Solve.

- 10. An accountant finds that the gross income, in thousands of dollars, of a small business can be modeled by the polynomial $-0.3t^2 + 8t + 198$, where *t* is the number of years after 2010. The yearly expenses of the business, in thousands of dollars, can be modeled by the polynomial $-0.2t^2 + 2t + 131$.
 - a. Find a polynomial that predicts the net profit of the business after *t* years.
 - b. Assuming that the models continue to hold, how much net profit can the business expect to make in the year 2016?

Multiplying Polynomials LESSON 6-2 Reteach

You can multiply polynomials horizontally or vertically.

Example Find the product by multiplying horizontally. $(x-5)(3x+x^2-7)$

Multiply each term of the first polynomial by each term of the second polynomial, then simplify.

 Write polynomials in standard form. 	$(x-5)(x^2+3x-7)$
2. Distribute x and -5 .	$x(x^{2}) + x(3x) + x(-7) + (-5)(x^{2}) + (-5)(3x) + (-5)(-7)$
3. Simplify.	$x^3 + 3x^2 - 7x - 5x^2 - 15x + 35$
4. Combine like terms.	$x^3 - 2x^2 - 22x + 35$

Example Find the product by multiplying vertically. $(x-5)(3x+x^2-7)$

1. Write each polynomial in standard form.

		x ²	+3 <i>x</i>	-7
2. Multiply –5 and $(3x + x^2 - 7)$.			x	-5
· · · · · ·		$-5x^{2}$	-15 <i>x</i>	+35
3. Multiply x and $(3x + x^2 - 7)$.	X ³	+3 <i>x</i> ²	-7 <i>x</i>	
	$\overline{X^3}$	$-2x^{2}$	-22 <i>x</i>	+35
4. Combine like terms.				

Date Class

LESS 6-			
Find	l each product.		
1.	$4x^2(3x^2+1)$	2. –	$-9x(x^2+2x+4)$
3.	$-6x^2(x^3+7x^2-4x+3)$	 4. x	$x^{3}(-4x^{3}+10x^{2}-7x+2)$
5.	$-5m^{3}(7n^{4}-2mn^{3}+6)$	6. ($(x+2)(y^2+2y-12)$
7.	$(p+q)(4p^2-p-8q^2-q)$	—	$(2x^2 + xy - y)(y^2 + 3x)$
Ехр	and each expression.		
-	$(3x-1)^3$	10. ($(x-4)^4$
11.	$3(a-4b)^2$	12. 5	$(x^2 - 2y)^3$

Solve.

13. A biologist has found that the number of branches on a certain rare tree in its first few years of life can be modeled by the polynomial $b(y) = 4y^2 + y$. The number of leaves on each branch can be modeled by the polynomial $I(y) = 2y^3 + 3y^2 + y$, where y is the number of years after the tree reaches a height of 6 feet. Write a polynomial describing the total number of leaves on the tree.

6-4 Factoring Polynomials	
Factoring a sum of two cubes:	$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$
Example Factor 125 <i>a</i> ³ + 8.	
	$125x^{3} + 8$ $(5x)^{3} + (2)^{3}$
Recognize the sum of two cubes.	$(5x+2)((5x)^2-(5x)(2)+(2)^2)$
Factor using factoring pattern.	$(5x+2)(25x^2-10x+4)$
Simplify.	

 $a^3-b^3=(a-b)(a^2+ab+b^2)$ Factoring a difference of two cubes: **Example** Factor $27a^3 - 64$. $27a^3 - 64$ $(3a)^{3} - (4)^{3}$ Recognize the difference of two cubes. $(3a-4)((3a)^{2}+(3a)(4)+(4)^{2})$ $(3a-4)(9a^2+12a+16)$ Factor using factoring pattern. Simplify.

	Factoring Polynomials							
0.	Practice and Problem Solving: A/B							
Simplify each polynomial, if possible. Then factor it.								
	3 <i>n</i> ²			$3x^3 - 75x$				
3.	9 <i>m</i> ⁴	- 16	4.	16 <i>r</i> ⁴ – 9				
5.	3 <i>n</i> ⁶	-12	6.	<i>x</i> ⁶ – 9				
7.	3b ⁷	+ 12b ⁴ + 12b	8.	$50v^6 + 60v^3 + 18$				
9.	x ³ –	64	10.	<i>x</i> ³ – 125				
11.	x ⁶ -	64	12.	x ⁶ - 1				
Fac	tor e	ach polynomial by grouping.						
		$-7n^2 + 56n - 49$	14.	$5x^3 - 6x^2 - 15x + 18$				
15.	9r ³ -	$+3r^2-21r-7$	16.	$25v^3 + 25v^2 - 15v - 15$				
17.	120	$b^3 + 105b^2 + 200b + 175$	18.	$120x^3 - 80x^2 - 168x + 112$				

Solve.

19. A square concert stage in the center of a fairground has an area of $4x^2 + 12x + 9$ ft². The dimensions of the stage have the form cx + d, where c and d are whole numbers. Find an expression for the perimeter of the stage. What is the perimeter when x = 2 ft?

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.