

Algebra II & Pre-AP Algebra II

This packet is a general review of concepts in this course. In this packet, you'll find:

A) Algebra II / Pre-AP Algebra II Key Concept Review (Chapters 1-8) with solutions at the bottom of each chapter review

- B) Curriculum based re-teaching lessons broken down by chapter so students can see examples from each chapter if useful
- C) Need some math help 24/7? Click on this link to Khan Academy.

 Search by topic to see examples done on video. For example, students could search "factoring quadratics" or "exponential growth and decay" or "rules of logarithms." No sign in is required.

These videos can be found at: https://www.khanacademy.org/

D)Contact your math teacher directly via e-mail or Schoology for questions, help & support. Reach out to your teachers!

Algebra II & Pre-AP Algebra II

Puyallup School District Virtual Learning Resources

Virtual Learning Opportunities – Puyallup Teachers will communicate lessons and activity resources through your child's Schoology Course or Group. Your child's teacher is ready to support your student through virtual learning!

Clever- a platform that makes it easier for schools to use many popular educational technology products. Essentially, it is a "bookmark" bar for the educational system- curriculum, support, and accessible links are housed in one location. You can access through PSD Favorites folder in the internet browser on a district issued device.

Schoology- The Puyallup School District platform teachers use to communicate, send course updates, collect assignments and assessments, host Schoology conferences (audio and video) and is the electronic gradebook.

Greetings Parents and Guardians:

Puyallup School District - Algebra II & Pre-AP Algebra II Key Concept Review

Chapter 1- Expressions, Equations, and Inequalities

Evaluate $3(x - 4) + 2x - x^2$ for x = 6 Answer: 1.

2. Simplify -(3a - 2b) - 3(-a - b) Answer:

Simplify $10x + 2y - 5x^2 + 2x - 5y + 6x^2$ Answer: 3.

- Solve each equation. Check your answer. 4.
 - a. 2x 5 = 17

x = Check:

b. 3(x+1) = 9 + 2x x =

Check:

Solve each inequality. Graph the solution. 5.

a. 4 + 3x > x + 12 Solution:

b. 4 - 5x > 2 careful! Solution:

2(5+3x) < x + 4(x+3) Solution: C.

Solve each equation. Check for any extraneous solutions by quickly checking 6. your solutions back into the original problem to see if they actually work. \odot

SOLUTIONS:

1) -18

- 2) 5b 3) $x^2 + 12x 3y$ 4) a. x = 11 b. x = 6
- 5) a. $x \ge 4$ b. $x \le \frac{2}{5}$ c. x < 2
- 6) a. x = 2 & 8 b. x = -7 & 6

Chapter 2 – Functions, Equations, and Graphs

- Find the domain and range of each relation. 1.
- a.
- {(-1,3), (0,5), (1,7), (2,9)} D: _____ R: ____
- {(-2,0), (0,-1), (4,-3), (6,-4)} D: _____ R: ____
- Determine whether each relation is a function. 2.
- $\{(0,2), (4,3), (5,5), (4,7)\}$ b. $\{(-1,0), (-5,2), (0,4), (2,-8)\}$
- 3. Find the x- and y-intercepts of each line.
 - 5y x = 10a.

b. 3x + 4 = y

c. 2y + 8x = -14

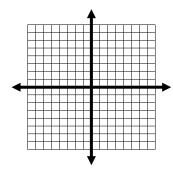
- Write and equation of each line in slope/intercept (s/i) and point-slope (p/s) form. 4.
 - slope is 2, through (1,4) α.

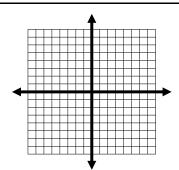
s/i: _____ p/s: ____

b. slope is $-\frac{2}{3}$, through (6,-9)

s/i: _____ p/s: ____

Passes through (5,8) and (0,-2)C.


s/i: _____ p/s: ____


Graph each equation. 5.

a.
$$5y - 10 = 15x$$

b.
$$4x - 3y = -2$$

Describe each transformation of the parent function y = |x|6.

a.
$$y = |x - 1| + 2$$

a. y = |x-1|+2 Transformations:

b.
$$y = -4|x|-1$$

b. y = -4|x|-1 Transformations:

Write an equation for each translation of $y = x^2$ 7.

a.

4 units down, 1 unit left

b. y = _____

7 units up, 3 units right

C.

2 units down, 6 units right

2b. yes
$$3a. (-10,0) (0,2)$$
 $3b. (-4/3,0) (0,4)$ $3c. (-7/4,0) (0,-7)$

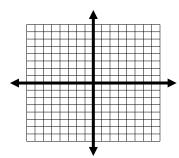
$$3c(-7/40)(0.7)$$

$$4a. v = 2x + 2. (v-4) = 2(x-1)$$

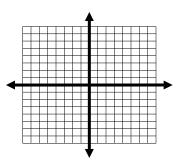
4a.
$$y = 2x + 2$$
, $(y-4) = 2(x-1)$
4b. $y = -\frac{2}{3}x - 5$, $(y+9) = -\frac{2}{3}(x-6)$
4c. $y = 2x - 2$, $(y-8) = 2(x-5)$
4d. $y = -1x + 4$, $(y-3) = -1(x-1)$

$$4c y = 2x - 2 (y-8) = 2(x-5)$$

$$4d \cdot v = -1x + 4 \cdot (v-3) = -1(x-1)$$


5a.
$$y = 3x+2$$
 5b. $y = \frac{4}{3}x + \frac{2}{3}$

7a.
$$(x+1)^2 - 4$$
 7b. $(x-3)^2 + 7$ 7c. $(x-6)^2 - 2$


Chapter 3- Linear Systems

Solve each system by graphing. CHECK YOUR ANSWERS!

1.
$$\begin{cases} x + y = 3 \\ y = 3x - 1 \end{cases}$$

$$2. \begin{cases} -x + 2y = 2 \\ 3x + 2y = -6 \end{cases}$$

Solve each system by <u>substitution</u>. CHECK YOUR ANSWERS!

$$3. \begin{cases} x - 3y = 2 \\ -x + 2y = 5 \end{cases}$$

$$4. \begin{cases} a - 3b = 4 \\ a = -2 \end{cases}$$

(,)

Solve each system by elimination. CHECK YOUR ANSWERS!

5.
$$\begin{cases} 3x + 2y = -17 \\ x - 3y = 9 \end{cases}$$

6.
$$\begin{cases} 5f + 4m = 6 \\ -2f - 3m = -1 \end{cases}$$

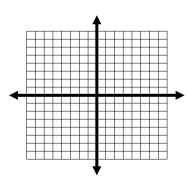
For each system, choose the solution method that seems easier to use. Explain why you made each choice. Solve each system. CHECK YOUR ANSWERS!

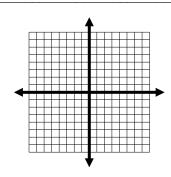
7.
$$\begin{cases} b = 2a - 5 \\ b = 3 + a \end{cases}$$

8.
$$\begin{cases} 4x - 2y = 11 \\ 4x + 3y = 6 \end{cases}$$

ANSWERS:

- 1. graph (1,2) 2. graph (-2,0) 3. (-19,-7) 4. (-2,-2)

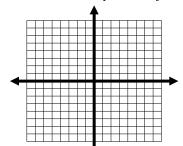

- 5. (-3,-4) 6. (2,-1) 7. Sub, (8,11) 8. elim (9/4,-1)

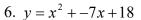

Graph each function. How is each function a translation of $f(x)=x^2$?

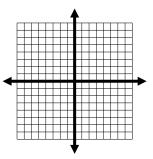
1.
$$f(x) = x^2 + 4$$

2.
$$f(x) = (x-9)^2 + 2$$

Translation(s):


Name the vertex for each function.


3.
$$f(x) = 4(x+2)^2 - 6$$


4.
$$f(x) = -(x-3)^2 + 2$$

Graph each function. Remember, you can find the x-value using x = -b/2a. Plug answer in to find y.

5.
$$y = x^2 + 6x + 5$$

V: (,)

V: (___,__)

Factor each expression. Always try looking for a common factor to bring out front first!

$$7. x^2 - 8x + 12$$

8.
$$3x^2 + 11x - 20$$

8.
$$3x^2 + 11x - 20$$
 9. $-4x^2 + 14x - 6$

10.
$$x^2 + 14x + 40$$

11.
$$x^2 - 14x + 49$$
 12. $9x^2 + 30x + 25$

12.
$$9x^2 + 30x + 25$$

13.
$$36x^2 - 16$$

14.
$$6x^2 - 24x$$

14.
$$6x^2 - 24x$$
 15. $-14x^2 - 49$

What is the quadratic formula? x = _____

Solve each equation by using the quadratic formula. No decimals in solutions. Just fully-simplified **square roots, etc.** Move all terms to the left and set equal to zero before your put values into formula.

$$16.\ 3x^2 + 5x - 8 = 0$$

17.
$$x^2 = 6x - 9$$

18.
$$x(x-3) = 4$$

19.
$$5x^2 - 7x - 3 = 0$$

Ch. 4 Group Review

SHOW YOUR WORK, NO GRAPHING CALCULATORS

1. V(0,4) & 4 up 2.

V(9,2) & 9 right, 2 up

3.

V(-2,-6) & x = -2

4. V(3,2) & x = 3 5.

V(-3,-4) & x = -3

V(3.5, 5.75) & x = 3.5

7. (x-2)(x-6)

13.

(x+5)(3x-4)8.

9.

-2(2x-1)(x-3)

10. (x+4)(x+10)

(x-7)(x-7)11.

12.

(3x+5)(3x+5) $-7(2x^2+7)$ 15.

4(3x+2)(3x-2)16. x = 1 & -8/3

14. 6x(x-4)

x = 4 & -1

 $x = \frac{7 \pm \sqrt{109}}{10}$ 19.

17. $x = 3 \& 3 \odot$ 18.

Chapter 5- Polynomials and Polynomial Functions

in solution.

1.	Write the equation o	f a polynomial in st	andard form that	has zeros of 5 and 2.	No parenthesis
	f(x) =				
2.	Write the equation o	f a polynomial in st	andard form that	has zeros of -3, 1, an	d 2.
	f(x) =				
3.	Factor each of the f	ollowing and then f	ind the zeros of e	each.	
a.	x ² - 5x + 6				
	Factors: ()()	zeros at x =	
b.	x² - 7x + 6				
	Factors: ()())	zeros at x =	
c.	x² - 64				
	Factors: ()()	zeros at x =	
d.	$x^3 + 9x^2 + 20x$				
	Factors:()()	zeros at x =	
e.	$x^3 - 10x^2 + 25x$				
	Factors:()()	zeros at x =	
f.	x³ - 25x				
	Factors: (V	,	Zanac at v -	

g.	$x^3 + 3x^2 - 10x$	
	Factors:()()() zeros at x =
4.	FACTORING BY GROUPING x3 - 3x	x² - 4x + 12
	Factors: ()()	Zeros: x =
5.	Use SYNTHETIC DIVISION to divide the f	ollowing polynomials. Remember place holders!
a. x ³	$+5x^2 - x - 5$ by $(x + 5)$	b. $2x^3 + 14x^2 - 58x$ by $(x + 10)$
Quotie	nt: Remainder:	Quotient: Remainder:
6.	Factor completely using the given factor and $y = x^3 - 4x^2 - 11x - 6$ if $(x + 1)$ is a factor.	synthetic division.
	Factors: (<u>x + 1</u>) () ()
7.	Factor completely using the given factor and $y = x^3 - 6x^2 + 11x - 6$ if $(x - 1)$ is a factor.	synthetic division.
	Factors: (<u>x + 1</u>) () ()
3c) (x- 3f) x(x 5a) Put	$-8)(x+8) \times = 8 \& -8$ 3d) $\times (x+4)(x+5) \times = 0$	3a) $(x-2)(x-3)$ $x = 2 & 3$ 3b) $(x-1)(x-6)$ $x = 1 & 6$ 1, -4 & -5 3e) $x(x-5)(x-5)$ $x = 0, 5 & 5$ = 0, -5 & 2 4) $(x-3)(x+2)(x-2)$ $x = 3, -2, 2$ $x^2 - 1$ R: 0 5b) Q: $2x^2 - 6x + 2$ R: -20

Chapter 6- Radical Functions and Rational Exponents

Find all of the REAL roots of each number WITHOUT a calculator.

1.
$$\sqrt{36}$$

2.
$$\sqrt[3]{-6^2}$$

3.
$$\sqrt[3]{\frac{-8}{125}}$$

$$4. \qquad \sqrt{25y^2}$$

5.
$$\sqrt{49x^4}$$

6.
$$\sqrt[3]{-8x^9}$$

Multiply, divide, add, or subtract - then simplify final answer.

$$7. \qquad \sqrt[3]{2x} \bullet \sqrt[3]{4x^5}$$

8.
$$\sqrt{2x} \bullet \sqrt{18xy^2}$$

9.
$$3\sqrt{180} + \sqrt{45} - 8\sqrt{20}$$

10. Simplify the following using factor trees, etc. NOT calculators...

a.
$$\sqrt[4]{81x^4y^{12}}$$

b.
$$\sqrt[3]{\frac{27x^6}{8y^3}}$$

Multiply then simplify. 11.

a.
$$(1-\sqrt{5})(2-\sqrt{5})$$
 b. $(1-\sqrt{7})(1+\sqrt{7})$

b.
$$(1-\sqrt{7})(1+\sqrt{7})$$

Let $f(x) = x^2 - x - 12$ and g(x) = x - 412.

a.

Domain of f(x): _____ Domain of g(x): _____

c. f(x) - 2g(x) =_____

Domain:

d. $f(x) \bullet g(x) = \underline{\hspace{1cm}}$

Domain:

e. $\frac{f(x)}{g(x)} =$ Domain:

g.
$$f(g(7)) =$$

h.
$$g(f(2)) =$$

Solutions:

5.
$$7x^2$$

6.
$$-2x^3$$

7.
$$2x^2$$

6 2. -4 3. -2/5 4.
$$-2x^3$$
 7. $2x^2$ 8. $6xy$ 9.

9.
$$5\sqrt{5}$$

10. a.
$$3xy^3$$

b.
$$3x^2/2y$$

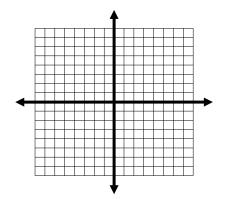
11. a.
$$7 - 3\sqrt{5}$$
 b. -

c.
$$x^2 - 3x - 4$$

a.
$$3xy^3$$
 b. $3x^2/2y$ 11. a. $7-3\sqrt{5}$ b. -6 a. $\mathcal R$ b. $\mathcal R$ c. x^2-3x - 4 d. x^3 - $5x^2-8x$ + 48 e. x + 3 g. -6 h. -14

7

Chapter 7- Exponential and Logarithmic Functions


1.
$$y = 2^{(x-1)} + 1$$

0 1 2

x y -2 -1

y-intercept @ (0, _____)

asymptote @ y = ____

Evaluate the expressions WITHOUT using a calculator. Show set-up on the right.

2.
$$x = _{0} \log_{16}4 = x$$

3.
$$x = ___ \log_2(.5) = x$$

4.
$$x = ____ \log_{1/2}(4) = x$$

5.
$$x = ___ log_31 = x$$

7.
$$x = ____ log_5 25 = x$$

8.
$$x = \frac{\log_2(1/32)}{32} = x$$

9.
$$x = ____ log_464 = x$$

10.
$$x = ____ log_9 3 = x$$

Solve the equations WITHOUT using a calculator.

11.
$$x = 4^{3x+1} = 32$$

14.
$$x = ____ log_5(4x+1) = log_5(2x+7)$$

	b. How about	$f(x) = 3 (2/3)^x$? growth or decay?
16.	Condense & simpli	fy the following expressions as far as possible.
	α	3 log x + log 7
	b	2 log x - log 5
	c	3 log 2 - 2 log 4
17.	Expand the expre	essions.
	a	In 3×y
	b	log x²y
18.	Use the change-or places of accurac	of-base formula to evaluate the expressions to four decimal y.
18.		y.
18.		•
18.	places of accurac	y.
Each	places of accurac a. b. of these four form	y log ₅ 10
Each	places of accurac a. b. of these four form	y log ₅ 10 log ₈ 2 ulas assumes you have an initial amount that gains or loses a certain percentage
Each	places of accurac a. b. of these four form a certain period of	y. $\log_5 10$ $\log_6 2$ $\log_8 2$
Each	places of accurac a. b. of these four form a certain period of $A = Pe^{rt}$	log ₅ 10 log ₈ 2 ulas assumes you have an initial amount that gains or loses a certain percentage time, but they are each a little different. growth - gains percentage compounding continuously
Each	places of accurac a. b. of these four form a certain period of $A = Pe^{rt}$ $A = P(1 + r/n)^{nt}$	log ₅ 10 log ₈ 2 ulas assumes you have an initial amount that gains or loses a certain percentage time, but they are each a little different. growth - gains percentage compounding continuously annually growth - gains percentage compounded a certain # of times per year
Each over (places of accurace a. b. of these four form a certain period of $A = Pe^{rt}$ $A = P(1 + r/r)^{rt}$ $A = P(1 + r)^{t}$ $A = P(1 - r)^{t}$ The value of a negative series of a negative series and accuracy.	log ₅ 10 log ₈ 2 ulas assumes you have an initial amount that gains or loses a certain percentage time, but they are each a little different. growth - gains percentage compounding continuously annually growth - gains percentage compounded a certain # of times per year growth - gains percentage compounded
Each	places of accurace a. b. of these four form a certain period of $A = Pe^{rt}$ $A = P(1 + r/r)^{rt}$ $A = P(1 + r)^{t}$ $A = P(1 - r)^{t}$ The value of a negative series of a negative series and accuracy.	log ₅ 10 log ₈ 2 ulas assumes you have an initial amount that gains or loses a certain percentage time, but they are each a little different. growth - gains percentage compounding continuously annually growth - gains percentage compounded a certain # of times per year growth - gains percentage compounded decay - loses percentage compounded annually ew car purchased for \$22,000 decreases by 10% per year.

21. You deposit \$6000 in an account that pays 5% annual interest, compounded MONTHLY. Find the balance after 10 years.

22. You deposit \$2000 in an account that pays 12% annual interest, compounded QUARTERLY. Find the balance after 4 years.

4000 mg of a substance is present initially, but it is decaying slowly. It loses 7% of its mass per 23. year. How much will be present after 40 years?

_ mg

Chapter 7 INDIVIDUAL Review Solutions

- 1. y-int (0,2) asymptote @ y = 1
- $2. \frac{1}{2}$
- 3. -1 4. -2
- 5. 0

- 6. 1
- 7. 2
- 8. -5
- 9. 3
- $10. \frac{1}{2}$
- 11. ½

- 12. -4
- 13. 5
- 14. 3
- 15. Growth, Decay
- 16. a) $\log 7x^3$ b) $\log x^2/5$ c) $\log \frac{1}{2}$
- 17. a) $\ln 3 + \ln x + \ln y$ b) $2 \log x + \log y$
- 18. a) 1.4307 b) .3333 19.
- - \$12,990.78 20. \$1,349.86

- 21. \$9,882.06 22. \$3,209.41 23. 219.5

Chapter 8- Rational Functions

Simplify the following expressions. For #4, you will need to factor the cubic using SOAP

4.

 $5. \qquad \frac{-2x}{x-x^2}$

6.

7. $\frac{x^3-8}{x-2}$

Perform the indicated operation and simplify the result.

 $\frac{3xy^5}{x^2y^3} \bullet \frac{y^2}{2x^2}$

9. $\frac{x^2 - x - 6}{4x^3} \bullet \frac{4x^2 + 4x}{x^2 + 5x + 6}$

10.
$$\frac{33x^3y}{y^9} \div \frac{11x^4}{y^6}$$

11.
$$\frac{x-3}{2x-8} \div \frac{x^2-9}{6x^2-96}$$

12.
$$\frac{2x}{x+5} + \frac{7}{x+5}$$

13.
$$\frac{6x^2}{x-2} - \frac{12x}{x-2}$$

14.
$$\frac{6}{4x^2} + \frac{2}{5x}$$

15.
$$\frac{8x-1}{x^2+x-6}-\frac{4}{x-2}$$

Solve the following equations. Be sure to check your solutions.

18.
$$\frac{3}{2} + \frac{1}{x} = 2$$

19.
$$\frac{2}{3x} + \frac{2}{3} = \frac{8}{x+6}$$

$$20. \qquad \frac{6x}{x+4} + 4 = \frac{2x+2}{x-1}$$

$$21. \qquad \frac{x-2}{x+2} = \frac{3}{x}$$

Solutions:

$$5. \qquad \frac{-2}{1-x}$$

7.
$$x^2 + 2x + 4$$

$$8. \qquad \frac{3y^4}{2x^3}$$

9.
$$\frac{(x-3)(x+1)}{x^2(x+3)}$$

$$10. \qquad \frac{3}{xy^2}$$

11.
$$\frac{3(x+4)}{(x+3)}$$

$$12. \qquad \frac{2x+7}{x+5}$$

14.
$$\frac{15+4x}{10x^2}$$

15.
$$\frac{4x-13}{(x+3)(x-2)}$$