Interactive Classroom

Agebra 1

LESSON 3-4

Direct Variation

Click the mouse button or press the space bar to continue.

Mc Graw Hill

Macmillan/McGraw-Hill Glencoe

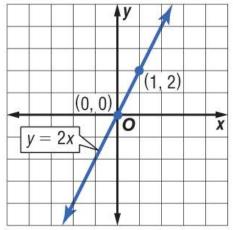
Copyright © by The McGraw-Hill Companies, Inc.

LESSON 3-4

Class Opener and Learning Target

- I CAN write, graph, and solve problems involving direct variation equations.
- Note Card 3-4ADefine Direct Variation and Constant of Variation (Constant of Proportionality).
- Note Card 3-4BCopy the Concept Summary (Direct Variation Graphs).

Direct Variation – Described by an equation of the form y = kx, where $k \neq 0$. **Constant of Variation or Constant of Proportionality** – the ratio k. **Direct Variation** 3-4A Chapter



LESSON

25-1

Slope and Constant of Variation

A. Name the constant of variation for the equation. Then find the slope of the line that passes through the pair of points.

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Slope formula

 $m = \frac{2-0}{1-0}$

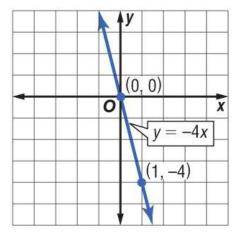
 $(x_1, y_1) = (0, 0)$

m = 2

Simplify.

Answer: $(x_2, y_2) = (1, 2)$ The constant of variation is 2. The slope is 2.

Chapter


MEN

EXAMPLE 1

Slope and Constant of Variation

B. Name the constant of variation for the equation. Then find the slope of the line that passes through the pair of points.

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Slope formula

 $m = \frac{-4 - 0}{1 - 0}$

$$(x_1, y_1) = (0, 0)$$

 $(x_2, y_2) = (1, -4)$

m = –4

Simplify.

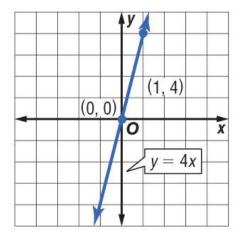
Answer: The constant of variation is -4. The slope is -4.

Chapter

MEN

LESSON

-//


A. Name the constant of variation for the equation. Then find the slope of the line that passes through the pair of points.

A.constant of variation: 4; slope: –4

B.constant of variation: 4; slope: 4

C.constant of variation: -4; slope: -4

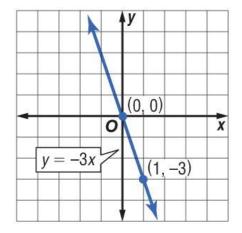
D.constant of variation:

Chapter

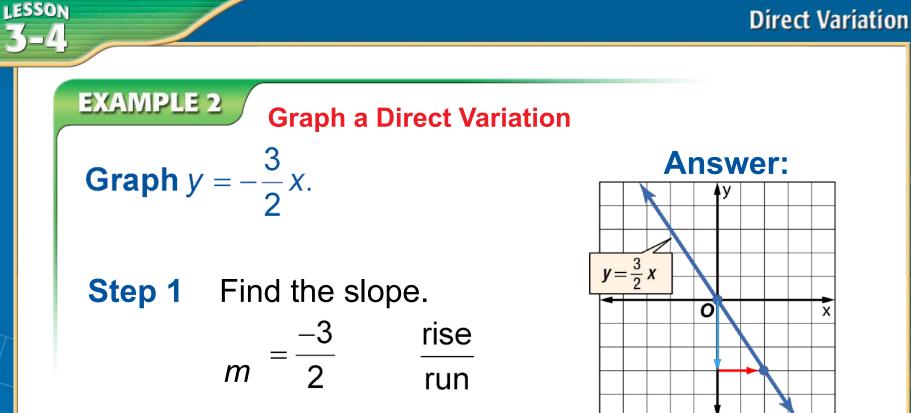
LESSON

-//

B. Name the constant of variation for the equation. Then find the slope of the line that passes through the pair of points.


A.constant of variation: 3; slope: 3

B.constant of variation:


$$\frac{1}{3}$$
; ope: $\frac{1}{3}$

C.constant of variation: 0; slope: 0

D.constant of variation: -3; slope: -3

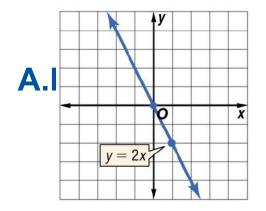
Chapter

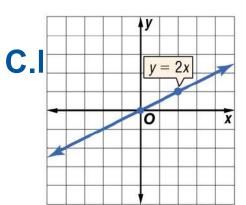
Step 2Graph (0, 0).

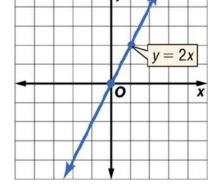
Step 3From the point (0, 0), move down 3 units and right 2 units. Draw a dot.

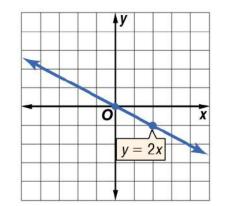
Chapter

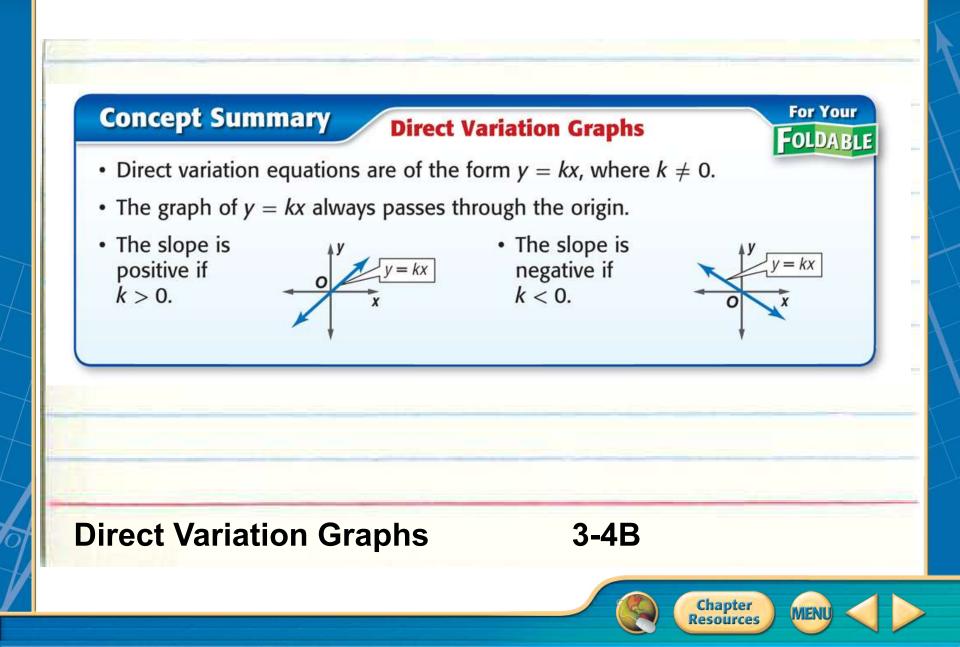
MENI


Step 4Draw a line connecting the points.




EXAMPLE 2 Check Your Progress


Graph *y* **=** 2*x*.



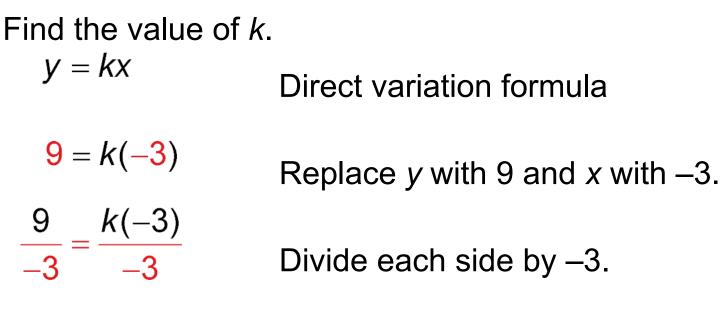
Chapter Resources MENU

LESSON

2 - 1

Chapter

MEN


EXAMPLE 3

LESSON

25-1

Write and Solve a Direct Variation Equation

A. Suppose y varies directly as x, and y = 9 when x = -3. Write a direct variation equation that relates x and y.

-3 = kSimplify.

Chapter Resources

MENU

Write and Solve a Direct Variation Equation

Answer: Therefore, the direct variation equation is y = -3x.

LESSON

25-1

EXAMPLE 3

EXAMPLE 3

-5 = x

Write and Solve a Direct Variation Equation

B. Use the direct variation equation to find x when *y* = 15.

- y = -3x**Direct variation equation** 15 = -3xReplace y with 15. $\frac{15}{3} = \frac{-3x}{-3}$
 - Divide each side by -3.

Chapter

MENI

Simplify.

Answer: Therefore, x = -5 when y = 15.

Chapter

Resources

MENI

Direct Variation

A. Suppose y varies directly as x, and y = 15 when x = 5. Write a direct variation equation that relates x and y.

LESSON

25-1

B.*y* = 15*x*

 $\mathbf{C}.\mathbf{y} = 5\mathbf{x}$

D.
$$y = 45x$$

Chapter

Resources

MENL

Direct Variation

B. Suppose *y* varies directly as *x*, and *y* = 15 when x = 5. Use the direct variation equation to find *x* when y = -45.

A.–3

LESSON

25-1

B.9

D.–5

Estimate Using Direct Variation

Chapter

MEN

A. TRAVEL The Ramirez family is driving cross-country on vacation. They drive 330 miles in 5.5 hours.

Write a direct variation equation to find the distance driven for any number of hours.

Words	Distance	equals	rate	times	time.
/ariable	Let $d = distance$ and $t = time$.				
quation	d	=	60	×	t

Estimate Using Direct Variation

Solve for the rate.

LESSON

25-1

330 = r(5.5) Original equation

 $\frac{330}{5.5} = \frac{r(5.5)}{5.5}$ Divide each side by 5.5.

60 = *r*

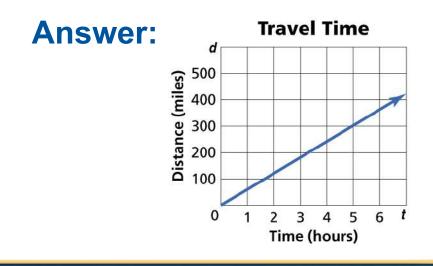
Simplify.

Answer: Therefore, the direct variation equation is d = 60t.

LESSON

Estimate Using Direct Variation

Chapter


Resources

MENL

B.Graph the equation.

The graph of d = 60t passes through the origin with a slope of 60.

LESSON

25-1

Estimate Using Direct Variation

Chapter

MENI

C. Estimate how many hours it would take to drive 500 miles.

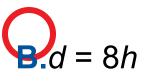
d = 60t Original equation

- 500 = 60t Replace d with 500.

 500 = 60t
- 60 = 60 Divide each side by 60.

8.33 $\approx t$ Simplify.

Answer: At this rate, it will take about 8.3 hours to drive 500 miles.


Chapter

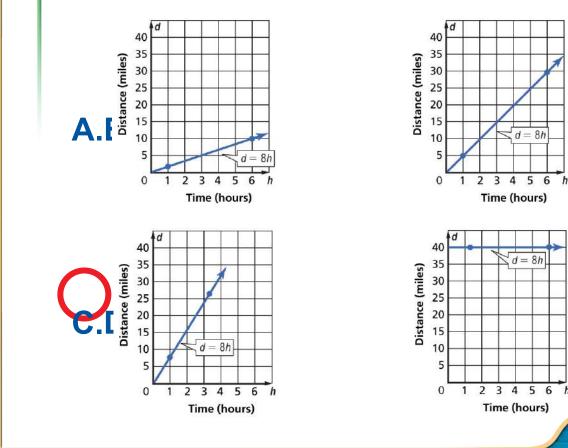
MEN

A. Dustin ran a 26-mile marathon in 3.25 hours. Write a direct variation equation to find the distance run for any number of hours.

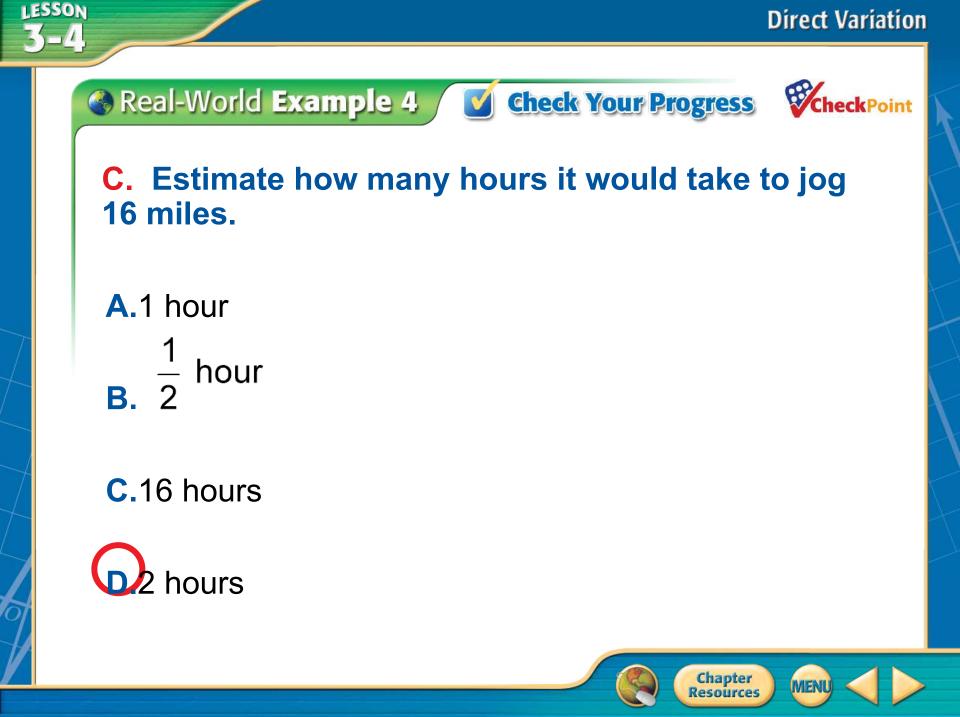
A.*d* = *h*

C.*d* = 8 **D**. $d = \frac{1}{8}h$

B. Dustin ran a 26-mile marathon in 3.25 hours. Graph the equation.


Check Your Progress

h


Chapter

Resources

MENU

Real-World Example 4

