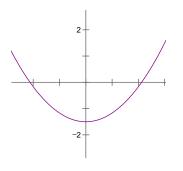
- 1. Multiply -6i(4-5i)
- 2. Simplify (5-2i)(6+8i)
- 3. Simplify (9+4i)-(3+2i)
- 4. Solve $\frac{x+4}{\sqrt{x}} = \sqrt{14}$

5. As a fund raiser, the Key Club is collecting used cell phones to recycle. The equation y = 5x + 50 represents the clubs earnings, *y*, based on collecting *x* cell phones. How much money does the Key Club earn if 75 cell phones are collected?

6. Find the equation of a circle with diameter

endpoints (7,-5) and (-1,10)

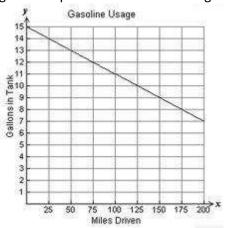

7. Is point (-15,4) on the circle with the equation $(x-2)^2 + (y-4)^2 = 289$?

8. A model for a company's revenue is $R = -15p^2 + 300p + 12,000$, where *p* is the price in dollars of the company's product. What price will maximize the revenue? Find the maximum revenue.

9. Write $f(x) = 3x^2 + 6x + 52$ in vertex form.

10. Find the vertex, domain, and range of the function $f(x) = \sqrt{x-2} - 3$.

11. What is the domain of the quadratic function shown on the graph?



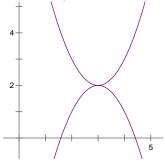
Name_____

Algebra 2

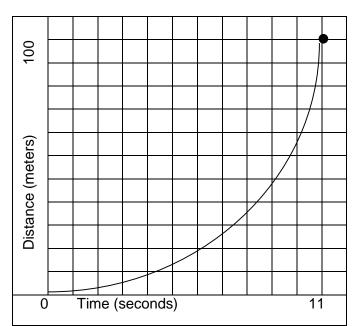
1st Semester Final Review

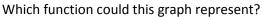
12. April is going on a trip and starting it off with a full tank of 15 gallons of gasoline. The graph on the coordinate grid shows a linear function shows the gas she expects to use while driving on her trip.

Write the equation in slope-intercept form of the function. Find the x-intercept, what does it represent?

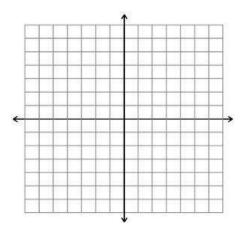

13. A golf ball is hit by a professional golfer. The height of the ball (in feet) is tracked as time passes (in seconds), and recorded on a data table.

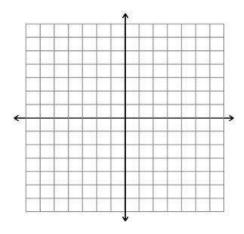
Golf Ball Height							
Time (s)	0	0.5	1	2	3		
Height (ft)	0	20	37	58	58		


In which time interval does the soccer ball reach its maximum height?


14. One parabola shown has equation $y = (x-3)^2 + 2$.

What is the equation for the other?


15. The graph represents a function related to a runner's movement over the course of a 100 meter race.


- a. The speed of the runner as he decreases his speed of acceleration
- b. The distance of the runner from the starting line as he accelerates
- c. The distance of the runner from the starting line as he approaches at a constant speed
- d. The speed of the runner as he slows down when approaching the finish line.

16. Graph
$$y = 2(x-1)^2 - 3$$

Name_

17. Graph 2x + 3y = 7

18. Solve y = mx + b for x?

19. Solve

a. 0.5(-8p+1) = -4p+1

b. 4x - 2(3 + 2x) = -6

20. In slope-intercept form, write the equation of the line that contains the points in the table.

x	-8	-4	4	8
у	-5	-3.5	-0.5	1

21. Mr. Robinson would like to put a pool in his backyard. He wants the width to be 1 ft more than the length. He also wants the pool to have a surface area of 210 ft². Write and solve an equation to find the dimensions of the pool.

22. Magnets cost \$10 plus \$1.25 each to produce. You sell them for \$1.75. How many magnets were sold if you made a profit of \$60?

23. Express the catering cost as a function of the number of people. Find how many people were in the group if the catering cost was \$338.

# in Group	Cost	
4	98	
7	134	
15	230	

24. The path of a projectile thrown in the air is modeled by $h(t) = -16t^2 + 22t + 3$, where *h* is the height in feet and *t* is time in seconds. Use factoring to find the time(s) at which the projectile is at ground level.

25. List all possible rational zeros of each function.

a.
$$g(x) = 6x^3 + 6x^2 - 15x - 2$$

29. Divide
$$\frac{x^2 - 4}{x + 3} \div \frac{x^2 - 4x + 4}{x^2 + 3x}$$

Name_____

b.
$$h(x) = 9x^6 - 5x^3 + 27$$

a. 3, √5

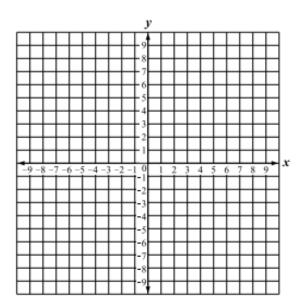
30. Multiply $\frac{x-3}{x^2-25} \cdot \frac{x^2+4x-5}{x^2-4x+3}$

31. Simplify
$$\frac{x-1}{x^2+3x+2} + \frac{x}{x+1}$$

b. 4*i* , 3, -3

32. Simplify
$$\frac{x+2}{x^2+4x+3} - \frac{x-1}{x+3}$$

27. Divide $(x^4 - 2x^3 + x - 1) \div (x + 1)$


33. Find the value of *k* for which (x-2) is a factor of $x^3 + 3x^2 - x + k = 0$

34. Expand the binomial $(r-3)^4$

Name_____

$$f(x) = x^3 - 2x^2 - 4x + 8$$

a. What are the zeros of the function?
b. Rewrite the polynomial in factored form.
Solve the quadratic $x^2 - 8x + 11 = 0$
c. What are the left and right behaviors of the function?
d. Find the y-intercept of the function.

e. Using your knowledge of left and right behaviors of a function, and the rules of multiplicity of zeros, sketch the graph of the polynomial function below. Plot all x and y intercepts.

36. Solve
$$\frac{3}{x^2 + 3x} + \frac{x+2}{x+3} = \frac{1}{x}$$

35.

37. Find the value of *x* that makes each sentence true. a. $(5^{\frac{1}{3}})^x = 25$

b.
$$\frac{36^2}{36^x} = 6$$

38. Find all zeros and graph the polynomial.