ALGEBRA 2 STUDY GUIDE

Ch 1 FOUNDATIONS

Interval Notation

Set Builder Notation

Domain "x" input values

Range "y" or f(x) output values

All (h, k) shifts

a = vertical stretch

h = horizontal shift

k = vertical shift

Parent Functions:

A) Linear

$$f(x) = x$$

B) Quadratic $f(x) = x^2$

$$f(x) = x^2$$

C) Cubic

$$f(x) = x^3$$

D) Square Root

$$f(x) = \sqrt{x}$$

E) Exponential $f(x) = ab^x$

F) Logarithmic

$$f(x) = \log x \text{ or } f(x) = \ln x$$

G) Absolute Value

$$f(x) = |x|$$

Ch 2 LINEAR FUNCTIONS

Slope – Intercept Form y = mx + b

Point-Slope Form

$$y - y_1 = m(x - x_1)$$

Slope

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Vertical Line x = a Horizontal Line y = b

Parallel Lines have = slopes

Perpendicular Lines have "opposite reciprocal" slopes

Linear Inequalities

< shade below

≤ shade below/include line(solid line)

> shade above

≥ shade above/include line(solid line)

Absolute Value

Or is a disjunction

And is a conjunction

Solving \rightarrow 2 equations, 1 positive, 1 negative

Ch 3 LINEAR SYSTEMS

Methods of solving

1) Graph ~ solution is point of intersection
2) Substitution
3) Elimination

Inequality Solution is the double shaded region

3-D Graphing

Graphing a point (x, y, z)

Graphing a plane by graphing the intercepts

Linear Programming → Maximums/Minimums occur at vertices

Ch 5 QUADRATIC FUNCTIONS

Standard Form
$$f(x) = ax^2 + bx + c$$

Standard Form
$$f(x) = ax^2 + bx + c$$

$$\begin{cases}
a = \text{direction \& width} \\
\frac{-b}{2a} \\
\text{axis of symmetry} \\
c = y\text{-intercept}
\end{cases}$$

Vertex Form $f(x) = a(x - h)^2 + k$ Vertex = (h, k)

$$Vertex = (h, k)$$

Solving Quadratics

- A) Factor
- B) Graph (x-intercepts)
- C) Complete the square

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

D) Quadratic Formula

Discriminant $b^2 - 4ac$

- No Real Solutions
- 0 1 Real Solutions
- + 2 Real Solutions

Complex Numbers a + bi

Add, subtract, multiply, divide, graph, find absolute value

$$i^2 = -1 \qquad \qquad i = \sqrt{-1}$$

Ch 6 POLYNOMIAL FUNCTIONS

Add, subtract (like terms)

Multiply (FOIL, Area boxes, distribute)

Binomials → use Pascal's Triangle

Divide

Long Division, Synthetic Division,
$$\frac{4}{a+3i} \cdot \left(\frac{a-3i}{a-3i}\right)$$
 use conjugate

Ch 6 POLYNOMIAL FUNCTIONS CONTINUED

Solving

Factoring

4 terms → try grouping
+/- of cubes
$$a^3 + 2^3 = (a + 2)(a^2 - 2a + 4)$$

Graphing, solutions (zeros) are x-intercepts

Irrational answers come in pairs

Complex answers come in pairs

Exactly n roots x⁵ has 5 roots

End Behaviors

Ch 7 EXPONENTIALS/LOGARITHMS

Exponential

$$f(x) = ab^x$$

b > 1 growth

b < 1 decay

Finding Inverse Functions

Switch x and y, then solve for y

Logarithms

$$3^2 = 9 \rightarrow \log_3 9 = 2$$

 $\log_4 64 = 3 \rightarrow 4^3 = 64$

Properties

Product

$$log_b mn = log_b m + log_b n$$

Quotient

$$\log_b \frac{m}{n} = \log_b m - \log_b n$$

Power

$$\log_b a^p = p(\log_b a)$$

 $\log_b a = \frac{\log a}{\log b}$

base 10 now

Change of base Solving Exponentials \rightarrow use logs

Solving $\log \rightarrow$ use exponents

"e" = 2.718

$$Ln e = 1$$

Natural Logs $y = \ln x$

Continuous Compounding $A = Pe^{rt}$

Ch 8 RATIONAL FUNCTIONS

Direct Variation
$$y = Kx$$
, $K = \frac{y}{x}$ Linear line through $(0, 0)$

Inverse Variation
$$y = \frac{K}{x}$$
, $K = xy$ Hyperbola

Factoring helps with simplifying, multiplying, dividing

Add/Subtract → need a LCD

Discontinuous graphs, holes, asymptotes, breaks

$$f(x) = \frac{p(x)}{q(x)}$$
 Zeros in Numerator
Vertical Asymptotes in denominator
Holes are same factors
Degrees Horizontal asymptote
$$p > q \qquad \text{none}$$
$$p < q \qquad y = 0$$

p = q divide coefficients

Solving → Multiply by LCD

Radicals are Fractional exponents
$$49^{1/2} = \sqrt{49}$$
 $\sqrt[3]{a^2} = a^{2/3}$

Radical Functions
$$y = \sqrt{x}$$
 sideways parabolas

Solving radical equations, isolate the radical, then do inverses

Ch 9 FUNCTIONS

$$f(x) = 3x$$
 $g(x) = 2x^2 - 1$

$$f(2) = (f+g)(x) = (f-g)(x)$$

$$f(g(4)) = \qquad \qquad f(g(x)) =$$

Ch 10 CONICS

Circles
$$(x-h)^2 + (y-k)^2 = r^2$$
 center (h, k)

Ellipses
$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$
Horizontal \rightarrow a is always > b

Major axis, minor axis, foci
$$(a^2 - b^2 = c^2)$$
, vertices, co-vertices

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$
Hyperbolas Horizontal because x comes 1st

Transverse axis, conjugate axis, vertices, co-vertices, foci ($a^2 + b^2 = c^2$), asymptotes, central rectangle

Ch 10 CONICS CONTINUED

To change to standard form you complete the square(s)

Ch 11 PROBABILITY

Factorial $4! = 4 \cdot 3 \cdot 2 \cdot 1$

 $_{n}P_{r}=\frac{n!}{(n-r)!}$ Permutation (order) $_{n}C_{r}=\frac{n!}{r!(n-r)!}$

Combination (no order)

Counting Principle: If you have m choices and then n choices then you have m·n total choices

All probabilities are between 0 and 1

favorable outcomes total outcomes Theoretical = what should happen

#of times event occurred #of trials

Experimental = what did happen

P(A and B) Independent $\rightarrow P(A) \cdot P(B)$ Dependent $\rightarrow P(A) \cdot P(B|A)$

P(A or B) Exclusive \rightarrow P(A) + P(B) Inclusive \rightarrow P(A) + P(B) – P(Both)

Central Tendency Mean, Median, Mode

Variance is the mean of the differences squared i.e. $(x-x)^{-1}$ Standard Deviation is $\sqrt{\text{var}iance}$

Binomial Theorem/Probability

 ${}_{n}C_{r}$ or Pascal's Triangle Pattern 1 1st term descends Pattern 2

$$P(r) = {}_{n}C_{r} \cdot p^{r}q^{n-r}$$

Ch 12 SEQUENCES & SERIES

Arithmetic "d"

Sequence
$$a_n = a_1 + d(n-1)$$

$$S_n = \frac{n}{2}(a_1 + a_n)$$
 Series

Geometric "r"

Sequence
$$a_n = a_1 \cdot r^{n-1}$$

$$S_n = a_1 \left(\frac{1 - r^n}{1 - r} \right)$$

Series

Geometric mean
$$\sqrt{ab}$$

Infinite converge
$$\frac{a}{1-r}$$