2-9 The Term of a Single Deposit Account

Advanced Financial Algebra

How long should funds (\$) remain in a single deposit savings account?

• You need to start now to plan for large expenses in the future.

• When trying to figure out how long money should stay in an account to have saved a certain amount, we must solve for an exponential variable using a logarithm (log).

Example 2 – Solving for an exponential variable

O Anna deposited \$1,000 into an account paying 2% annual interest compounded semiannually. How long will it take for her to have \$1,061.52?

• SOLUTION:

ightarrow P = \$1,000 r = 2% = .02

O A = P(1 + -)()

 \circ 1061.52 = 1000 * 1.01 ^{2†}

- \circ 1.06152 = 1.01 ^{2†}
- \circ Log 1.01 1.06152 = 2t
- $O \ \frac{\log 1.06152}{\log 1.01} = 5.999985742 = 2$

t = ?? A = \$1,061.52n = 2 compounded semi-annually

$$061.52 = 1000(1 + \frac{.02}{2})^{(2*)}$$

divide both sides of equation by 1000 change to logarithm form change of base formula

divide both sides of equation by 2

It will take about 3 years to have \$1,061.52 in the account.

 \circ \sim .

Example 4

O Nancy and Bob are renovating their kitchen. They deposited \$16,000 in an account at 2.4% annual interest compounded monthly. When will they have \$20,00 for their kitchen project?

O SOLUTION:

- \circ P = \$16,000 r = 2.4% = .024
- **O** A = P(1 + -)()
- **O** 20000 = 16000 * 1.002 ^{12†}
- **O** 1.25= 1.002 ^{12†}
- O Log 1.002 1.25 = 12t

 $O \frac{\log 1025}{\log 1.002} = 111.68 = 12$

O ≈ 9.3

t = ?? A = \$20,000 n = 12 compounded monthly 20000 = $16000(1 + \frac{.024}{12})^{(12*)}$

divide both sides of equation by 16000 change to logarithm form change of base formula

divide both sides of equation by 12

It will take about 9.3 years to save up for the kitchen.

Example 5 – continuous compounding

O Pete deposits \$8,000 into an account paying 3.7% annual interest compounded continuously. How long will it take for him to have \$10,000?

• SOLUTION:

- P = \$8,000 r = 3.7% = .037 t = ?? A = \$10,000
- Use A = P() for continuous compounding

 \circ 10000 = 8000()^{(.037}) divi

- $0 1.25 = e^{.0371}$
- O Log e 1.25 =.037†
- Ln 1.25 = .037†

 \circ ~ 6

divide both sides of equation by 8000 change to logarithm form

 Log_{e} is the natural logarithm In

divide both sides of equation by .037

It will take about 6 years to have \$10,000 in the account.

Assignment: FIN. ALG. GREY BOOK PG 127 #2, 7, 10 and BLUE ALG. II BOOK pg 489 #64, 67, 71

In each of the following compound interest equations with t representing the account term, determine the number of times the account is compounded per year (in the first blank) and the interest rate percent (in the second blank).

a. 2254=2000(1.002) ^{12t}	
b. 244.04=200(1.01) ^{2t}	
c. 6900=6000(1.006) ^{6t}	
d. 15669.93=10000(1.00375) ^{12t}	
e. 268.57=100(1.025) ^{2t}	

O #2

Assignment: FIN. ALG. GREY BOOK PG 127 #2, 7, 10 and BLUE ALG. II BOOK pg 489 #64, 67, 71 con't

<mark>O</mark> #7

Jasmine wants to start saving to purchase an apartment. Her goal is to save \$225,000. If she deposits \$180,000 into an account that pays 3.12% interest compounded monthly, approximately how long will it take for her money to grow to the desired amount? Round your answer to the nearest tenth of a year.

Laura deposits \$10,000 into an account that compounds interest continuously at a rate of 2.2%. To the nearest tenth of a year, how long will it take her money to grow to \$10,800?