2-5 Compound Interest Formula

Advanced Financial Algebra

What is compound interest?

• Remember description and examples from Section 2-4.

• Compound interest means that you are paid interest on your balance AND on previous interest you have earned.

• Compound interest allows your money to grow FASTER!

Developing formula

• Start with % increase and decrease formula: A = P(1 +) = Principal (1 +)

• r is the interest rate, but we must divide it into periods depending upon how frequent compounding occurs: r = %/(# of compounds per year, n) written as a decimal

• Periodic compounding formula (not just yearly/annual): A = P(+-)(-)

A = amount \$ after time P = Principal (original \$) r = rate as a decimal n = number of compounds per year t = time in years

Example 1 – quarterly compounding using formula

 Jose opens a savings account with principal P dollars that pays 2% interest, compounded quarterly. What will his ending balance be after 1 year?

• SOLUTION:

• Use the formula:
$$A = P(1 + -)^{(-)} = P(1 + \frac{.02}{4})^{(4+1)} = P(...)^{(-)}$$

Example 2 – daily compounding using formula

• If you deposit *P* dollars for 1 year at 2.3% compounded daily, express the ending balance algebraically.

• SOLUTION:

• Use the formula with r = 2.3% as a decimal = .023 and n = 365 for daily:

O
$$A = P(1 + -)() = P(1 + \frac{.023}{.365})(365 * 1) = P(...)()$$

Example 3 – daily compounding given Principal

O Marie deposits \$1,650 for 3 years at 1% interest, compounded daily. What is her ending balance?

• SOLUTION:

• Use the formula with P = \$1.650, r = 1% as a decimal = .01, n = 365 for daily, and t = 3 years:

• A = P(1 + -)() =
$$1650(1 + \frac{.01}{.365})(365 * 3) = \frac{$1,700.25 \text{ after three years}}{$1,700.25 \text{ after three years}}$$

Assignment: pg 100 #3-6, 8, 11, 13

	шо	On Olga's 16th birthday, her uncle invested \$2,000 in an account that was locked into a 1.75% interest rate, compounded monthly. How much
0	#3	will Olga have in the account when she turns 18? Round to the nearest cent.
		Samantha deposits \$1,500 into the Park Street Bank. The account pays 1.12% annual interest, compounded daily. To the nearest cent, how
0	#4	much is in the account at the end of three non-leap years?
0	#5	Joanne deposits \$4,300 into a one-year CD at a rate of 2.3%, compounded daily.
		What is her ending balance after the year?
		How much interest does she earn?
		What is her annual percentage yield to the nearest hundredth of a percent?

Assignment: pg 100 #3-6, 8, 11, 13 continued

0	#6	Mike deposits \$5,000 in a three-year CD account that yields 1.5% interest, compounded weekly. What is his ending balance at the end of three
		years?
0	#8	How much more does \$1,000 earn in eight years, compounded daily at 3%, than \$1,000 over eight years at 3%, compounded semiannually?
		Lindsay invests \$80 in an account that pays 1% annual interest, compounded monthly. Michele invests \$60 in an account that pays 2% annual
0	#11	interest, compounded weekly.
		Whose balance is greater after one year?
		Whose balance is greater after twelve years?

#13 Rodney invests a sum of money, P, into an account that earns interest at a rate of r, compounded yearly. Gerald invests half that amount P/2 into an account that pays twice Rodney's interest rate 2r. Which of the accounts will have the higher ending balance after 1 year? Explain.