Interactive Classroom

LESSON 2-7

Parent Functions and Transformations

Click the mouse button or press the space bar to continue.

Copyright © by The McGraw-Hill Companies, Inc.

LESSON

2)-1

Five-Minute Check (over Lesson 2–6) Then/Now **New Vocabulary Key Concept: Parent Functions Example 1:Identify a Function Given the Graph Example 2:Describe and Graph Translations Example 3:Describe and Graph Reflections Example 4:Describe and Graph Dilations Example 5:Real-World Example: Identify Transformations Concept Summary: Transformations of Functions**

Parent Functions and Transformations

Chapter

Resources

MEN

🗹 5-Minute Check

Over Lesson 2–6

Identify the type of function represented by the graph.

A.linear

B.piecewise

C.absolute value

D.parabolic

Parent Functions and Transformations

🗹 5-Minute Check

Over Lesson 2–6

2 Identify the type of function represented by the graph.

A.piecewise

B.linear

C.parabolic

Chapter

Chapter

MEN

LESSON

72-7

kPoint

The function
$$f(x) = \begin{cases} 5x, \text{ if } x < 8 \\ 8.5x - 1, \text{ if } 8 \le x < 16 \\ 12x + 4, \text{ if } x \ge 16 \end{cases}$$

gives the amount of money earned for working different number of hours. How much will an employee earn for working 12 hours?

Over Lesson 2–6

A.\$60 **B.**\$101 **C.**\$102 **D.**\$148

Chapter

LESSON

You analyzed and used relations and functions. (Lesson 2–1)

- Identify and use parent functions.
- Describe transformations of functions.

- family of graphs
- parent graph

LESSON

7/---

- parent function
- constant function
- identity function
- quadratic function
- translation

- reflection
- line of reflection
- dilation

MEN

Chapter

pter urces MEN

Identify a Function Given the Graph

A. Identify the type of function represented by the graph.

Answer: The graph is a V shape. So, it is an absolute value function.

Identify a Function Given the Graph

B. Identify the type of function represented by the graph.

Answer: The graph is a parabola, so it is a quadratic function.

Chapter

MEN

A. Identify the type of function represented be the graph.

Check Your Progress

A.absolute value function B.constant function C.quadratic function D.identity variation

Chapter

MEN

B. Identify the type of function represented be the graph.

Check Your Progress

A.absolute value function B.constant function C.quadratic function B identity variation

Parent Functions and Transformations

Describe and Graph Translations

Describe the translation in $y = (x + 1)^2$. Then graph the function.

Answer: The graph of the function $y = (x + 1)^2$ is a translation of the graph of $y = x^2$ left 1 unit.

Chapter

LESSON

72-7

Check Your Progress

Describe the translation in y = |x - 4|. Then graph the function.

A.translation of the graph y = |x| up 4 units

B.translation of the graph y = |x| down 4 units C.ranslation of the graph y = |x| right 4 units

D.translation of the graph y = |x| left 4 units

Chapter

Parent Functions and Transformations

Describe and Graph Reflections

Describe the reflection in y = -|x|. Then graph the function.

Answer: The graph of the function y = -|x| is a reflection of the graph of y = |x| across the *x*-axis.

Chapter

Describe the reflection in $y = -x^2$. Then graph the function.

LESSON

71-7

A eflection of the graph $y = x^2$ across the *x*-axis

B.reflection of the graph $y = x^2$ across the *y*-axis

C.reflection of the graph $y = x^2$ across the line x = 1.

D.reflection of the graph $y = x^2$ across the x = -1

Chapter

Chapter

MENI

EXAMPLE 4

Describe and Graph Dilations

Describe the dilation on $y = \frac{1}{2}|x|$. Then graph the function.

Answer: The graph of $y = \frac{1}{2}|x|$ is a dilation of the graph y = |x|. The graph of has a slope that is less steep than the graph of y = |x|.

LESSON

72-7

Describe the dilation in y = |2x|. Then graph the function.

- A.dilation fo the graph of y = |x|compressed vertically
- B. dilation fo the graph of y = |x|stretched vertically
- C.dilation fo the graph of y = |x|translated 2 units up
- **D**.dilation fo the graph of y = |x|translated 2 units right

Chapter

Real-World Example 5

LESSON

Identify Transformations

ARCHWAYS The function $f(x) = -\frac{1}{2}(x-5)^2 + 12.5$ can be used to represent a parabolic archway. Describe the transformations in the function. Then graph the function.

Real-World Example 5

Identify Transformations

Answer:

LESSON

22-7

- -5 translates $f(x) = x^2$ right 5 units.
- +12.5 translates $f(x) = x^2$ up 12.5 units.
- $-\frac{1}{2}$ reflects $f(x) = x^2$ across the x-axis and

expands the graph.

MENL

Chapter

Parent Functions and Transformations

LESSON

Which of the following is *not* an accurate
description of the transformations in the function
$$f(x) = -\frac{1}{4} | x + 4 | - 2$$

4 translates f(x) = |x| right 4 units

MEN

Chapter

CheckPoint

- **B.**-? translates f(x) = |x| down 2 units
- **C.** 4 anslates f(x) = |x| across the *x*-axis
- **D.** $-\frac{1}{4}$ anslates f(x) = |x| right 4 units

Concept Summary	Transformations of Functions	For Your
Transformation	Change to Parent Graph	
Translation		
f(x+h)	Translates graph h units left.	
f(x-h)	Translates graph <i>h</i> units right.	
f(x) + k	Translates graph k units up.	
f(x) - k	Translates graph k units down.	
Reflection		
-f(x)	Reflects graph in the <i>x</i> -axis.	
f(-x)	Reflects graph in the y-axis.	
Dilation		
$a \cdot f(x), a > 1$	Stretches graph vertically.	
$a \cdot f(x), 0 < a < 1$	Compresses graph vertically	
f(bx), a > 1	Compresses graph horizontally.	
f(bx), 0 < a < 1	Expands graph horizontally.	

MENU

Parent Functions and Transformations

Click the mouse button to return to the Lesson Menu.

LESSON

2-7

