Algebra Chapter 10 Review

Describe the domain of the function.

1.
$$f(x) = \sqrt{x+3}$$
 2. $g(x) = \sqrt{-x} + 2$ **3.** $h(x) = -\sqrt{x-2} + 1$

Graph the function.

6. $t(x) = \sqrt[3]{x} - 2$

	↓ <i>y</i>		
	-2		
< <u>→</u>		-	>
		2	X

Describe the transformations from the graph of *f* to the graph of *h*.

- 8. $f(x) = \sqrt{x}; h(x) = -2\sqrt{x-3} + 4$
- **9.** $f(x) = \sqrt[3]{x}; h(x) = \frac{1}{2}\sqrt[3]{-x+3} 1$

Solve the equation. Check your solution.

 10. $\sqrt{y} = 4$ 11. $2\sqrt{x} - 15 = -7$

 12. $2\sqrt{x-1} = 14$ 13. $10 - 4\sqrt{2a-7} = -78$

 14. $\sqrt[3]{x} + 1 = 5$ 15. $\sqrt[3]{2b-7} = -3$

 16. $\sqrt{-30 + 11k} = k$ 17. $\sqrt{\frac{p}{9}} = \sqrt{2p - 170}$

Describe the range of the function.

18.
$$h(x) = \sqrt{x-5}$$
 19. $q(x) = -\sqrt{x+3} + 2$

Find the inverse of the function. Then graph the function and its inverse. Be sure to give the restrictions if needed.

х

6 x

4

24. The velocity (in meters per second) of a car speeding up with time can be modeled by the equation $v(t) = 6\sqrt{t}$.

a. What is the car's velocity at 4 seconds?

- **b.** When does the car's velocity reach 24 meters per second?
- 25. A cylindrical can of soup has a volume of 170 cubic inches. The radius of the soup is found using the formula $r = \sqrt{\frac{V}{\pi h}}$, where r is the radius, V is the volume of the can, and h is the height of the can.

a. If the height of the can is 6 inches, find its radius to the nearest inch.

- **b.** If the radius of the can is 3 inches, find its height to the nearest inch.
- **26.** Consider the graph of $y = \sqrt{x}$.
 - **a.** Write a function that is a horizontal translation of the graph of $y = \sqrt{x}$.
 - **b.** Write a function that is vertical shrink of the graph of $y = \sqrt{x}$.
 - c. Write a function that is reflection in the x-axis followed by a vertical translation of the graph of $y = \sqrt{x}$.

27. In Exercises a and b, compare the graphs. Find the value of h, k, or a.

a.

b.

In Exercises 28 and 29, determine which solution, if any, is an extraneous solution.

28. $\sqrt{3x-2} = x; x = 1, x = 2$ **29.** $\sqrt{x+6} = x; x = 3, x = -2$

- **30.** The radius r of a circle that goes through the point (x, y) is given by $r = \sqrt{x^2 + y^2}$.
 - **a.** Circle A has a radius of 5 centimeters and goes through the point (*x*, 4). Find the *x*-coordinate of the point.
 - b. Circle B has a radius of 13 centimeters and goes through the point (5, y).Find the *y*-coordinate of the point.
- **31.** The temperature -273.15° C is defined as being absolute zero. It is the basis for the Kelvin (K) temperature scale. The formula C = K - 273.15 converts a Kelvin temperature to a Celsius temperature.
 - **a.** Determine whether the inverse of the formula C = K 273.15 is a function.
 - **b.** Using the formula C = K 273.15, solve for K. Is this new formula the inverse of the formula C = K 273.15? Explain.

Algebra Chapter 10 Review Answers

31. **a.** yes

b. K = C + 273.15; yes; The graphs are symmetric about the line y = x.