

n and the Waltz of the

Chapter Four

- Ancient astronomers believed the Earth to be at the center of the universe
- They invented a complex system of epicycles and deferents to explain the direct and retrograde motions of the planets on the celestial sphere

Merry-go-round rotates clockwise

A rotating merry-go-round

Wooden horses fixed on merry-go-round

The Greek geocentric model Sun Moon **Earth** Stars fixed on celestial sphere

Celestial sphere rotates to the west

Planet moves rapidly eastward along epicycle

Epicycle moves slowly eastward along deferent

As seen from Earth, planet moves eastward (direct motion)

Earth

A planet's synodic period is measured with respect to the Earth and the Sun (for example, from one opposition to the next)

table 4-2	4-2 Average Distances of the Planets from the Sun	
Planet	Copernican value (AU*)	Modern value (AU)
Mercury	0.38	0.39
Venus	0.72	0.72
Earth	1.00	1.00
Mars	1.52	1.52
Jupiter	5.22	5.20
Saturn	9.07	9.55
Uranus		19.19
Neptune	_	30.07
Pluto		39.54
*1 $AU = 1$ astr	conomical unit = average distance from the Earth t	o the Sun.

table 4-1	Synodic and Sidereal Periods of the Planets		
Planet	Synodic period	Sidereal period	
Mercury	116 days	88 days	
Venus	584 days	225 days	
Earth	—	1.0 year	
Mars	780 days	1.9 years	
Jupiter	399 days	11.9 years	
Saturn	378 days	29.5 years	
Uranus	370 days	84.1 years	
Neptune	368 days	164.9 years	
Pluto	367 days	248.6 years	

table 4-3	A Demonstration of Kepler's Third Law ($P^2 = a^3$)			
Planet	Sidereal period P (years)	Semimajor axis a (AU)	P ²	a^3
Mercury	0.24	0.39	0.06	0.06
Venus	0.61	0.72	0.37	0.37
Earth	1.00	1.00	1.00	1.00
Mars	1.88	1.52	3.53	3.51
Jupiter	11.86	5.20	140.7	140.6
Saturn	29.46	9.55	867.9	871.0
Uranus	84.10	19.19	7,072	7,067
Neptune	164.86	30.07	27,180	27,190
Pluto	248.60	39.54	61,800	61,820

. 11

 $\alpha = 58^{\circ}$

 $\alpha = 42^{\circ}$

 $\alpha = 24^{\circ}$

 $\alpha = 15^{\circ}$

 $\alpha = 10^{\circ}$

There is a correlation between the phases of Venus and the planet's angular distance from the Sun

Observationes Deprivates
MarlH.12 (* *
30. mont ++ 0 +
2. xon: Q** *
3. mor 0 * *
3·Ho.r. *O *
9. mont. *0 **
6. manc * * 0 *
8. mand H. 13. # * * ()
0. mape: * * * () *
1. * *0 *
r. H. q. negg: * 0 *
3. manu" # #+0 #
Marie. * * * 0 *

$$F = G\left(\frac{m_1m_2}{r^2}\right)$$

Newton's description of gravity accounts for Kepler's laws and explains the motions of the planets and other orbiting bodies

Orbits may be any of a family of curves called conic sections

