Bone Tissue

Consists mainly of <u>connective tissue</u>: ✓ widely scattered bone cells surrounded by an abundant matrix.

The matrix: ✓ 25% water ✓ 25% collagen fibers > Accounts for the bone's flexibility ✓ 50% crystallized minerals > Mainly CaPO₄ and CaCO₃ > Fills in around the collagen fibers > Accounts for the bone's hardness

Bone Growth and Repair

Ossification or Osteogenesis

- formation of bone
- continuous process

4 types of cells involved in the growth of bones:

- 1) osteoprogenitor cells
- 2) osteoblasts
- 3) osteocytes
- 4) osteoclasts

Osteoprogenitor Cells

- Unspecialized stem cells found in
 - the periosteum,
 - the endosteum (membrane that surrounds the medullary cavity),
 - and the vessel canals of the osteons in the compact bone.

They are the only bone cells to undergo cell division. The resulting daughter cells develop into <u>osteoblasts.</u>

Osteoblasts

- Arise from *osteoprogenitor* cells.
- "Bone-Building" cells
 - Secrete the collagen fibers and other organic compounds and inorganic minerals that make up the bone matrix (discussed previously)
 - Initiate calcification (hardening of the bone)
- Do not undergo cell division.
- Convert to osteocytes when trapped in matrix.

Osteocytes

- Derived from osteoblasts.
- Considered "mature bone cells."
- Do not undergo cell division.
- Maintain the bone's daily metabolism.

Ossification

- Begins in the womb and continues throughout life.
- Types:
 - 1) Intramembrous ossification
 - ✓ bone develops between 2 membranous sheets
 e.g. skull development

2) Endochondral ossification

- ✓ endo within; chondral cartilage
- ✓ bone formation in the majority of the skeletal bones
- ✓ Shaped cartilage is replaced with bone

Endochondral Ossification of the Long Bone (Also refer to Figure 6-4 on pg 165 of Chapter 5 handout)

Once the growth plate scars over, the length and width of the bone can no longer increase; however, ossification never stops.

Hormones control the growth of bones.

Osteoclast

- Not only is bone constantly being built up, the body must also be able to tear down old bone.
 - This is the function of the osteoclast.
 - Known as *resorption:* breakdown of bone matrix
- Osteoclasts originate from the fusion of as many as 50 WBC's called monocytes found in the red bone marrow.
- Osteoclasts help move calcium and phosphate into the blood stream.

Remember: osteo<u>b</u>last = build-up osteoclast = break-down

9

Osteoclast

Secretes:
✓ lysozymes to destroy the collagen
✓ acids to dissolve the minerals

Bone Remodeling

- <u>Ongoing</u> process of resorption and ossification occurs simultaneously:
 - Osteoclasts carve out tunnels in old bone tissue
 - Osteoblasts build new bone to fill in that tunnel.
- Smaller bones undergo complete turnover approximately every 2 months; larger bones take longer (actual times vary between sources)

2 Purposes of Bone Remodeling

Renews bone tissue before deterioration sets in.

Redistribute bone matrix along stress lines.

Bone Fractures

What is a fracture?

- A fracture is a partial or complete break in the bone.
- When a fracture occurs, it is classified as either:
 - 1) simple (closed) fracture the bone is broken, but the skin is intact.
 - 2) compound (open) fracture the bone exits and is visible through the skin, or where a deep wound exposes the bone through the skin.

Common Types of Fractures

hairline fracture:

A fine fracture that does not completely break or displace the bone; appears on x-ray as a hair

spiral fracture:

A fracture caused by a severe twisting of the bone; runs around axis

Common Types of Fractures

greenstick fracture:

An incomplete break; more common in children because of softer bones.

comminuted fracture:

A bone is crushed to the point it becomes fragmented into 3 or more pieces.

Common Types of Fractures

compression fracture: A bone is compressed usually

due to disease or trauma.

stress fracture:

Incomplete fracture due to repetitive stress such as in athletics or disease. Most commonly a hairline fracture or fractures of weightbearing bones such as the tibia (lower leg) or metatarsals (foot). Often missed on an x-ray but seen in as bone scan.

Treatment of Fractures

Bones can heal normally only if the ends of the bones are aligned.

- 1st -- Must be *set* (*reduced*) if not aligned:
 - Closed Reduction: force is exerted on the broken bone to bring the bones into alignment.
 - Open Reduction or Surgical Reduction is required requiring pins, screws, plates, etc. to align bones.

2nd -- Must be immobilized with a splint or cast.

Traction: use of weights exerting a pulling force on fractured long bones keeps them in place and allows healing.

Bone Repair

The following steps occur in the repair of a fractured bone.

Bone Repair Step 1: Formation of *"fracture hematoma"*

✓ Blood leaks and clots at fracture site 6-8 hrs after injury.
 ✓ New capillaries grow into the clot.
 ✓ Phagocytes (WBC's) remove dead blood cells and osteoclasts remove dead bone tissue.
 ✓ Can last up to several weeks.

Bone Repair Step 2: Formation of "bony *callus*"

✓ Ossification occurs:

Osteoprogenitor cells produce osteoblasts.

Osteoblasts produce matrix and mineralization occurs to bridge the broken ends of the bone.

Osteocytes form in the matrix.

✓ Lasts from 1-4 months

Bone Repair Step 3: Bone Remodeling

✓ Compact Bone replaces spongy bone around perimeter of fracture.

✓ Normal simultaneous ossification and resorption occurs.

✓Usually >4 months; severely broken bones will take longer due to reduced blood supply.

A healed bone is as strong or stronger than before the fracture.