Exponential and Logarithmic Functions

Copyright © Cengage Learning. All rights reserved.

What You Should Learn

- Solve simple exponential and logarithmic equations.
- Solve more complicated exponential equations.
- Solve more complicated logarithmic equations.
- Use exponential and logarithmic equations to model and solve real-life problems.

There are two basic strategies for solving exponential or logarithmic equations. The first is based on the One-to-One Properties and the second is based on the Inverse Properties.

For a > 0 and $a \neq 1$ the following properties are true for all x and y for which

 $\log_a x$ and $\log_a y$

are defined.

One-to-One Properties

$$a^x = a^y$$
 if and only if $x = y$.

$$\log_a x = \log_a y$$
 if and only if $x = y$.

Inverse Properties

$$a^{\log_a x} = x$$

$$\log_a a^x = x$$

Example 1 – Solving Simple Exponential and Logarithmic Exponential

Original Equation	Rewritten Equation	Solution	Property
a. $2^x = 32$	$2^x = 2^5$	x = 5	One-to-One
b. $\log_4 x - \log_4 8 = 0$	$\log_4 x = \log_4 8$	x = 8	One-to-One
c. $\ln x - \ln 3 = 0$	$\ln x = \ln 3$	x = 3	One-to-One
d. $\left(\frac{1}{3}\right)^x = 9$	$3^{-x} = 3^2$	x = -2	One-to-One
e. $e^x = 7$	$\ln e^x = \ln 7$	$x = \ln 7$	Inverse
f. $\ln x = -3$	$e^{\ln x} = e^{-3}$	$x = e^{-3}$	Inverse
g. $\log_{10} x = -1$	$10^{\log_{10} x} = 10^{-1}$	$x = 10^{-1} = \frac{1}{10}$	Inverse
h. $\log_3 x = 4$	$3^{\log_3 x} = 3^4$	x = 81	Inverse

The strategies used in Example 1 are summarized as follows.

Strategies for Solving Exponential and Logarithmic Equations

- 1. Rewrite the original equation in a form that allows the use of the One-to-One Properties of exponential or logarithmic functions.
- 2. Rewrite an *exponential* equation in logarithmic form and apply the Inverse Property of logarithmic functions.
- **3.** Rewrite a *logarithmic* equation in exponential form and apply the Inverse Property of exponential functions.

Solving Logarithmic Equations

Solving Logarithmic Equations

To solve a logarithmic equation, you can write it in exponential form.

In x = 3 $e^{\ln x} = e^3$ $x = e^3$ Logarithmic form Exponentiate each side. Exponential form

This procedure is called *exponentiating* each side of an equation. It is applied after the logarithmic expression has been isolated.

Example 6 – Solving Logarithmic Equations

Solve each logarithmic equation.

a. In 3*x* = 2

b. $\log_3(5x - 1) = \log_3(x + 7)$

Solution:

a. In 3*x* = 2

 $e^{\ln 3x} = e^2$

Write original equation.

Exponentiate each side.

Example 6 – Solution

$$3x = e^2$$

$$x = \frac{1}{3}e^2$$

Inverse Property

Multiply each side by $\frac{1}{3}$

 $x \approx 2.46$

Use a calculator.

The solution is $x = \frac{1}{3}e^2$

≈ 2.46

Check this in the original equation.

Example 6 – Solution

b.
$$\log_3(5x-1) = \log_3(x+7)$$

Write original equation.

$$5x - 1 = x + 7$$
 One-to-One Property

$$x = 2$$
 Solve for x

The solution x = 2. Check this in the original equation.

Because the domain of a logarithmic function generally does not include all real numbers, you should be sure to check for extraneous solutions of logarithmic equations.

Example 10 – The Change of-Base Formula

Prove the change-of-base formula: $\log_a x = \frac{\log_b x}{\log_b a}$.

Solution: Begin by letting

 $y = \log_a x$

and writing the equivalent exponential form

$$a^y = x$$
.

Example 10 – Solution

Now, taking the logarithms *with base b* of each side produces the following.

 $\log_b a^y = \log_b x$

log r

 $y \log_b a = \log_b x$

Power Property

	Ing _b x	
<i>y</i> =	$\log_b a$	
log _a x =	$\log_b x$	
	$\log_b a$	

Divide each side by logb a.

Replace with loga x.

cont'd

Example 12 – Doubling an Investment

You have deposited \$500 in an account that pays 6.75% interest, compounded continuously. How long will it take your money to double?

Solution:

Using the formula for continuous compounding, you can find that the balance in the account is

$$A = Pe^{rt}$$

$$= 500e^{0.0675t}$$
.

To find the time required for the balance to double, let A = 1000, and solve the resulting equation for *t*.

Example 12 – Solution

cont'd

 $500e^{0.0675t} = 1000$

 $e^{0.0675t} = 2$

 $\ln e^{0.0675t} = \ln 2$

 $0.0675t = \ln 2$

t ≈ 10.27

 $t = \frac{\ln 2}{0.0675}$

Substitute 1000 for A.

Divide each side by 500.

Take natural log of each side...

Inverse Property

Divide each side by 0.0675.

Use a calculator.

The balance in the account will double after approximately 10.27 years.