Radiation and Radioactivity

- Radiation: Energy in transit, either particulate or electromagnetic in nature
- Radioactivity: The characteristic of various materials to emit ionizing radiation
- Ionization: The removal of electrons from an atom. The essential characteristic of high energy radiations when interacting with matter.

Alpha Decay

Gamma-Ray Emission

Gamma Ray

Parent Nucleus Cesium-137 Molybdenum-99 Daughter Nucleus Barium-137m Technetium-99m

Types of Radiation

Measures of Radioactivity

Activity: The quantity of radioactive material present at a given time:

 -Curie (Ci): 3.7x10¹⁰
 disintegration per

second (dps) -milliCurie (mCi): 3.7×10^7 dps -microCurie (mCi): 3.7×10^4 dps -picoCuries (pCi): .037 dps -Becquerel (Bq): 1 dps

Half-Life

Radiation Detection Gas Filled Detectors Voltage Source

Radiation Detection Scintillation Detectors

Incident Ionizing Radiation Light Photon Photomultiplier Tube Pulse Measuring Device Sodium-lodide Anode Dynode **Crystal Photocathode Optical Window**

Radiation and Radioactivity

- Radiation: Energy in transit, either as particles or electromagnetic waves
- Radioactivity: The characteristic of various materials to emit ionizing radiation
- Ionization: The removal of electrons from an atom. The essential characteristic of high energy radiations when interacting with matter.

Radiation Units

- Roentgen: A unit for measuring the amount of gamma or X rays in air
- Rad: A unit for measuring absorbed energy from radiation
- Rem: A unit for measuring biological damage from radiation

Elements

An element is the smallest amount of a substance that still exhibits the properties of that substance.

Elements are classified by the number of protons in each atom, and can be arranged in order in the Periodic Chart.

Atoms

Atoms are the building blocks of all matter, made up of protons and neutrons and electrons.

Almost all atoms are very stable, but some may have too much energy and be radioactive.

Molecules and Compounds

Atoms group together or bond to each other forming molecules and compounds.

Examples of these are water (2 hydrogen, 1 oxygen atoms) and sugar (6 carbon, 12 hydrogen and 6 oxygen atoms)

Three States of Matter

- Solid: Solids are items don't change their shapes like rocks, wood and ice.
- Liquid: Liquids flow, like water, alcohol and glass
- Gas: Gases are free flowing, like air, oxygen and steam.

The difference between each is the amount of energy the molecules have

Electromagnetic Waves

Electromagnetic waves are energy waves, ranging from the low energy radio waves to the high energy gamma rays.

They have a height (amplitude) and a length between wave peaks (wave length)

Non-Ionizing Electromagne/ Radiation

Non-Ionizing Electromagnetic Radiations do not have enough energy to remove electrons from atoms, such as:

- Ultraviolet Radiation
- Light
- Infrared Radiation
- Microwaves
- Radio Waves

Contamination vs Radiation

Radiation and Contamination are often confused. Radiation is energy, while contamination is the physical presence of a radioactive material on something.

So, you may have contamination on your shoe, but not radiation.

Ionizing Electromagnetic Radiation

Ionizing Electromagnetic Radiations do have enough energy to remove electrons from atoms, such as:

- X-rays
- Gamma rays

Units of Contamination

Contamination, or the presence of radioactive material on something is measured as count on a detector per some time like a minute (cpm), or by the actual decay rate (dps).

Radiation Effects and Risk

- Exposure: A measure of ionization in air from x-ray and gamma rays.
 - Roentgens, or mR
- Dose: A measure of the energy absorbed in any material as a radiation passes through it.

-Rads or mrads, Gray or mGy.

• Dose equivalent: A measure of "risk"

Activities or Effects of Radiation Dose

- Food Irradiation: 100000 rads
- Cancer Radiation Therapy: 6000 rads
- Lethal WB Dose to 50% of Population: 350 rads
- Increase risk of cancer by 1% 12.5 rem
- Maximum Annual Occupational Dose:

Radiation Known to Occur at High Doses

- Non-Stochastic Effects: A health effect where the severity of the effect increases with dose:
 - -Cataracts
 - -Sterility
 - -Loss of Hair (Epilation)
 - -Skin Reddening (Erythema)
 - -Acute Radiation Syndrome

Cancer and Cancer Risk

- Each year 1,000,000 cancers are diagnosed in the U.S.
- Cancer is the second leading cause of death in the U.S. Approximately 1 in 6 will die of cancer.
- Radiation exposure does not cause unique forms of cancer.
- The risk of cancer from radiation exposure is assumed to be linear with dose (ICRP

Radiation and Risk Perceptions and Reality

Public

1	Nuclear Power
2	Motor Vehicles
3	Handguns
4	Smoking
5	Motorcycles
6	Alcoholic Beverages
7	Private Aviation
8	Police Work
9	Pesticides
10	Surgery
11	Fire Fighting
12	Large Construction
13	Hunting
14	Spray Cans
15	Mountain Climbing

Radiation and Risk: Perceptions and Reality

Public

16	Bicycles
17	Commercial Aviation
18	Electric Power
19	Swimming
20	Contraceptives
21	Skiing
22	X-Rays
23	High School and College Football
24	Railroads
25	Food Preservatives
26	Food Coloring
27	Power Mowers
28	Prescription Antibiotics
29	Home Appliances
30	Vaccinations

Radiation and Risk: Perceptions and Reality

Public

1	Nuclear Power	20	\mathbf{E}
2	Motor Vehicles	1	
3	Handguns	4	
4	Smoking	2	
5	Motorcycles	6	
6	Alcoholic Beverages	3	
7	Private Aviation	12	
8	Police Work	17	
9	Pesticides	8	
10	Surgery	5	
11	Fire Fighting	18	
12	Large Construction	13	
13	Hunting	23	
14	Spray Cans	26	
15	Mountain Climbing	29	
			J

Experts

Radiation and Risk: Perceptions and Reality

ſ				
Public	16	Bicycles	15	Experts
	17	Commercial Aviation	16	
	18	Electric Power	9	
	19	Swimming	10	
	20	Contraceptives	11	
	21	Skiing	30	
	22	X-Rays	7	
	23	High School and College Football	27	
	24	Railroads	19	
	25	Food Preservatives	14	
	26	Food Coloring	21	
	27	Power Mowers	28	
	28	Prescription Antibiotics	24	
	29	Home Appliances	22	
	30	Vaccinations	25	

Days of Life Lost from Various Risks

Being an unmarried male	3,500
Smoking cigarettes and male	2,250
Heart disease	2,100
Being an unmarried female	1,600
Being 30 percent overweight	1,300
Cancer	980
Being 20 percent overweight	900
Having only an 8th grade education	850
Smoking and being female	800
Being poor	700
Stroke	520
Having a dangerous job	300
Driving a car	207
Pneumonia, Flu	141
Alcohol	130
Accidents in the home	95
Suicide	95
Diabetes	95

Days of Life Lost from Various Risks

Being Murdered	90
Having an average risk job	74
Drowning	41
Having a job with radiation exposure	40
Falls	39
Walking down the street	37
Having a safe job	30
Fires and burns	27
Using illegal drugs	18
Poisoning	17
Suffocation	13
Natural Radiation	8
Medical X-Rays	6
Coffee	6
Oral contraceptives	5
Riding a bike	5
Drinking Diet Sodas	2
Radiation from Nuclear Industry	0.02

Activities which increase risk by 1 in a Million

Smoking 1.4 Cigarettes Drinking 0.5 liter of wine Spending 1 hour in a coal mine Spending 3 hours in a coal mine Living two days in Boston or New York **Traveling 10 miles by bicycle Traveling 150 miles by car** Flying 1000 miles by jet Flying 6000 miles by jet Living two months in Denver Living two months in brick building **One chest x-ray Eating 40 Tablespoons of peanut butter** Living 5 years at site boundary of a nuclear plant **Eating 100 charcoal -broiled steaks** Living within 5 miles of a nuclear reactor for 50 years

Cancer, heart disease **Cirrhosis of the liver Black lung disease** Accident **Air Pollution** Accident Accident Accident **Cancer caused by cosmic radiation Cancer caused by cosmic radiation Cancer caused by natural radiation Cancer caused by radiation** Liver cancer caused by aflatoxin B **Cancer caused by radiation**

Cancer from benzopyrene Cancer caused by accidental radiation release

Nuclear Power

 \bigcirc

Fission Chain Reactions

Basic Design of a Reactor Core

Pressurized Water Reactor

Boiling Water Reactor

* Cravons are not radioactive nor are they used as nuclear fuel

School Presentation

What Will You Learn Today?

4 Identify natural background and manufactured sources of radiation.

4 Learn how radiation affects living things.

4 Learn how radiation is detected using radiation survey meters

The three basic particles of the atom are PROTONS, NEUTRONS AND ELECTRONS

UNSTABLE atoms emit energy

RF μ wave infrared visible uv x-ray γ -ray cosmic

high energy ionizing radiation

low energy non-ionizing Non-Ionizing Radiation Does not have enough energy to remove electrons from surrounding atoms

Ionizing Radiation can deposit energy in neighboring atoms resulting in the removal of electrons.

Alpha Radiation is only a hazard when inside your body (internal hazard)

Beta Radiation is a Skin, Eye and Internal Hazard

Neutron particles have no charge and can penetrate deep into the body

Radiation Versus Radioactive Contamination

• Radiation is particles or waves of energy emitted from unstable atoms.

• Radioactive Contamination is radioactive material usually in any location you do not want it.

Background and Manufactured Radiation In the U.S. Contributes 360 mrem per Year

Manufactured sources of radiation contribute an average of 60 mrem/year

cigarette smoking - 1300 mrem

round trip US by air 5 mrem per trip

smoke detectors - 0.0001 mrem

medical - 53 mrem

fallout < 1 mrem

Biological Effects of Radiation

è Early scientists determined that radiation was a useful tool but it could hurt you.

è Radiation can cause burns and cellular damage.

Biological Effects of Radiation

4 The principle hazard from radiation exposure is an increase in the risk of cancer induction.

SIGNS ARE REQUIRED TO NOTIFY EVERYONE OF THE PRESENCE OF RADIATION

MONITORING RADIATION EXPOSURE

Radiation dosimeters measures radiation dose to people.

Minimize Dose By Good Practices

- TIME reduce time of exposure
- DISTANCE increase distance
- SHIELDING use shielding

Radiation is detected with survey meters

Beta, Gamma & X-ray Survey Meter

Solar Radiation

Cosmic Rays

Radon

Radiation and Life

Nuclear Medicine

X-Rays

Consumer Products

Radioactive

Waste

Each Other

 $^{4}2^{\alpha ++}$

Nuclear Power

Contribution of Various Sources of Radiation to Average Annual

Average Annual Effective Dose • intural Sou Reputation, (1980-82) 200 mrem -Radon **Total Annual** 27 mrem Dose = 360 mrem-Cosmic 10 mrem 28 mrem -Cosmogenic 39 mrem -Terrestrial

0.9 mrem

0.05 mrem

• Occupational

-In the Body

- Nuclear Fuel Cycle5 13 mrem
- Consumer Products 39 mrem -Tobacco 14 mrem
 - ther

Upto 16 rem to **Bronchial epithelium** (Lung lining)

Early Uses of Radioactivity

- Radiation Therapy
- Welsbach Thorium Gas Mantles
- Uranium Ceramic Glazes
- Anna Glass (Uranium Nitrate)
- Luminous Dials (Radium)
- Patent Radium Therapies
 - -Radithor
 - -Radium Poultices
- $\mathbf{D} = 1 + \mathbf{O} + \mathbf{O$

Modern Uses of Small Amounts of Radioactive Material or Radiation

- Ophthalmic Glass
- Aerosol (Smoke) Detectors
- Airport Inspection Systems
- Lantern Mantles
- Fluorescent Lamp Starters
- Welding Rods
- Fluid Guages
- Check Sources

Modern Uses of Large Amounts of Radioactive Materials or Radiation

- Nuclear Power
- Nuclear Propulsion
- Nuclear Weapons
- Food and Medical Supply Irradiation
- Industrial Radiography
- Scientific Research
- Medical X-Rays
- Nuclear Medicine Services

RADON and Life

How Does Radon Get in the

- 1. Cracks in Solid FloorsHom
- **2. Construction Joints**
- 3. Cracks in Walls
- 4. Gaps in Floors
- 5. Gaps around Pipes
- 6. Cavities in Walls
- 7. The Water Supply

2

How is Radon Detected

- Charcoal Canisters
- Alpha Track Detectors
- Electret Monitors
- Radon Sniffers

Radon Risk If You Smoke...

Radon Level	If 1,000 people who smoked were exposed to this level over their lifetime	The risk of cancer exposure compares to
20 pCi/l	About 135 people could get lung cancer	<a>←100 times the risk of drowning
10 pCi/l 8 pCi/l	About 71 people could get lung cancer About 57 people could get lung cancer	←100 times the risk of dying in a home fire
4 pCi/l	About 29 people could get lung cancer	100 times the risk of dying in an air plane crash
2 pCi/l	About 15 people could get lung cancer About 9 people could get lung	<a> ←2 times the risk of dying in a car crash
1.3 pCi/l 0.4 pCi/l	cancer About 3 people could get lung cancer	(Average indoor radon level) (Average outdoor radon

Radon Risk If You've Never

$O_{1} = 1$		
Radon Level	If 1,000 people who smoked were exposed to this level over their lifetime	The risk of cancer exposure compares to
20 pCi/l	About 8 people could get lung cancer	 ←Risk of being killed in a violent crime
pCi/l	About 4 people could get lung cancer	
8 pCi/l	About 3 people could get lung cancer	 ←10 times the risk of dying an an airplane crash
4 pCi/l	About 2 people could get lung cancer	The risk of drowning
2		
рсіл	About 1 person could get lung cancer	home fire
1.3 pCi/l	Less than 1person could get lung cancer Less	(Average indoor radon level)
0.4 pCi/l	than 1 person could get lung cancer	(Average outdoor radon level)

Radiation and Risk

How Risky is it Really??

Years from Your Life

Days from Your Life

Hours from Your Life

