

Reteaching with Practice

For use with pages 446-450

VOCABULARY

The shortest distance between the bases of a trapezoid is the height of the trapezoid. Area = $\frac{1}{2}$ (height)(sum of bases)

Area of a Trapezoid:

Find the Area of a Trapezoid **EXAMPLE 1**

Find the area of the trapezoid.

SOLUTION

Exercises for Example 1

Find the area of the trapezoid.

151

15 m

9 m

Reteaching with Practice

For use with pages 446–450

EXAMPLE 2 Use the Area of a Trapezoid

NAME

Given that the area of the trapezoid is 170 square inches, find b_1 .

SOLUTION

$A = \frac{1}{2}h(b_1 + b_2)$	Formula for the area of a trapezoid
$170 = \frac{1}{2}(10)(b_1 + 16)$	Substitute 170 for A, 10 for h, and 16 for b_2 .
$170 = 5(b_1 + 16)$	Simplify $\frac{1}{2}(10)$.
$34 = b_1 + 16$	Divide each side by 5.
$18 = b_1$	Subtract 16 from each side.

Answer: The value of b_1 is 18 inches.

Exercises for Example 2

A gives the area of the trapezoid. Find the missing measure.

Reteaching with Practice

For use with pages 446-450

NAME

EXAMPLE 3 Use the Pythagorean Theorem

Find the height using the Pythagorean Theorem. Then find the area of the trapezoid.

SOLUTION

Find the height of the trapezoid by using the Pythagorean Theorem on the right triangle.

$a^2 + b^2 = c^2$	Pythagorean Theorem
$h^2 + 12^2 = 15^2$	Substitute 12 for <i>b</i> , 15 for <i>c</i> , and <i>h</i> for <i>a</i> .
$h^2 + 144 = 225$	Simplify.
$h^2 = 81$	Subtract 144 from each side.
h = 9	Take the positive square root of each side.

So, the height of the trapezoid is 9 units. Now use the formula for the area of the trapezoid.

$$A = \frac{1}{2}h(b_1 + b_2) = \frac{1}{2}(9)(22 + 38) = \frac{1}{2}(9)(60) = 270$$

Answer: The area of the trapezoid is 270 square units.

Exercises for Example 3

Find the height of the trapezoid using the Pythagorean Theorem. Then find the area of the trapezoid.

h

h

15

12

15

12

22

.....

38

153