Reteaching with Practice

For use with pages 439-445

GOAL

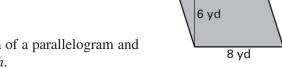
Find the area of parallelograms.

VOCABULARY

Either pair of parallel sides of a parallelogram are called the **bases of the parallelogram**. The shortest distance between the bases of a parallelogram is called the **height of a parallelogram**.

Area of a Parallelogram: Area = (base)(height)

Area of a Rhombus: Area = $\frac{1}{2}$ (product of diagonals)


EXAMPLE 1

Find the Area of a Parallelogram

Find the area of the parallelogram.

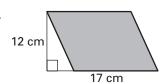
Use the formula for the area of a parallelogram and substitute 8 for b and 6 for b.

A = bh Formula for the area of a parallelogram

= (8)(6) Substitute 8 for b and 6 for h.

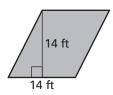
= 48 Multiply.

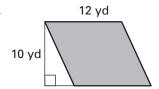
Answer: The parallelogram has an area of 48 square yards.


Exercises for Example 1

Find the area of the parallelogram.

1.


2.


Reteaching with Practice

For use with pages 439-445

3.

4.

EXAMPLE 2 Find the Base of a Parallelogram

Find the base of the parallelogram given that its area is 105 square inches.

SOLUTION

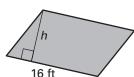
Use the formula for the area of a parallelogram and substitute 105 for A and 7 for h.

$$A = bh$$
 Formula for the area of a parallelogram

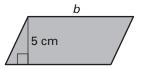
$$105 = b \cdot 7$$
 Substitute 105 for A and 7 for h.

$$15 = b$$
 Divide each side by 7.

Answer: The parallelogram has a base of 15 inches.


Exercises for Example 2

A gives the area of the parallelogram. Find the missing measure.


5.
$$A = 63 \text{ m}^2$$

6.
$$A = 144 \text{ ft}^2$$

7.
$$A = 55 \text{ cm}^2$$

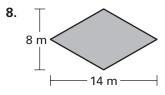
Reteaching with Practice

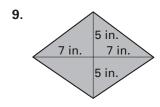
For use with pages 439-445

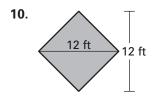
EXAMPLE 3 Find the Area of a Rhombus

Find the area of the rhombus.

SOLUTION


Use the formula for the area of a rhombus. Add the segment lengths to find the values of d_1 and d_2 .


$$A = \frac{1}{2}d_1d_2$$
 Formula for the area of a rhombus
$$= \frac{1}{2}(6+6)(3+3)$$
 Substitute $(6+6)$ for d_1 and $(3+3)$ for d_2 .
$$= \frac{1}{2}(12)(6)$$
 Simplify within parentheses.
$$= 36$$
 Multiply.


Answer: The area of the rhombus is 36 square feet.

Exercises for Example 3

Find the area of the rhombus.

