

NAME

Reteaching with Practice

For use with pages 430-438

Vocabulary

The **height of a triangle** is the perpendicular segment from a vertex to the line containing the opposite side, called the **base of the triangle**.

DATE

Area of a Triangle: Area = $\frac{1}{2}$ (base)(height)

Theorem 8.3 Areas of Similar Polygons

If two polygons are similar with a scale factor of $\frac{a}{b}$, then the ratio of $\frac{a^2}{b}$

their areas is $\frac{a^2}{b^2}$.

EXAMPLE 1 Find the Area of a Right Triangle

Find the area of the right triangle.

SOLUTION

Use the formula for the area of a triangle and substitute 15 for b and 8 for h.

$$A = \frac{1}{2}bh$$
$$= \frac{1}{2}(15)(8)$$
$$= 60$$

Formula for the area of a triangle

8 yd

15 yd

Substitute 15 for *b* and 8 for *h*.

Answer: The right triangle has an area of 60 square yards.

Simplify.

Exercises for Example 1

Find the area of the right triangle.

145

For use with pages 430–438

EXAMPLE 2 Find the Area of a Triangle

NAME

SOLUTION

$A = \frac{1}{2}bh$	Formula for the area of a triangle	4
$=\frac{1}{2}(8)(4)$	Substitute 8 for <i>b</i> and 4 for <i>h</i> .	
= 16	Simplify.	
	6.1 <i>C</i>	

Answer: The triangle has an area of 16 square centimeters.

Exercises for Example 2

20 cm

9 in.

EXAMPLE 3 Find the Base of a Triangle

Find the base of the triangle, given that its area is 42 square feet.

SOLUTION

$A = \frac{1}{2}bh$	Formula for the area of a triangle
$42 = \frac{1}{2}b \cdot 6$	Substitute 42 for <i>A</i> and 6 for <i>h</i> .
$84 = b \cdot 6$	Multiply each side by 2.
14 = b	Divide each side by 6.

Answer: The triangle has a base of 14 feet.

Date _

4 cm

8 cm

NAME_____

Reteaching with Practice

For use with pages 430 - 438

Exercises for Example 3

A gives the area of the triangle. Find the missing measure.

EXAMPLE 4 Areas of Similar Triangles

 $\triangle ABC \sim \triangle DEF$. Find the scale factor of $\triangle DEF$ to $\triangle ABC$. Then find the ratio of their areas.

SOLUTION

The scale factor of $\triangle DEF$ to $\triangle ABC$ is $\frac{4}{2} = \frac{2}{1}$. Then by Theorem 8.3, the ratio of the areas of $\triangle DEF$ to $\triangle ABC$ is $\frac{2^2}{1^2} = \frac{4}{1}$. You can verify this by finding their areas.

Exercise for Example 4

10. $\triangle ABC \sim \triangle DEF$. Find the scale factor of $\triangle DEF$ to $\triangle ABC$. Then find the ratio of their areas.

147