Jasper City Schools 7th Grade Math Pacing Guide 08.14.2018

- Thoughtful and effective <u>planning</u> throughout the school year is crucial for student mastery of standards.
- Once a standard is introduced, it is understood that the standard is continuously taught and/or reviewed throughout the <u>entire</u> school year **ONGOING** standards listed after pacing guide

First Nine Weeks	Second Nine Weeks	Third Nine Weeks	Fourth Nine Weeks
*4.) Apply and extend previous	10.) Use variables to represent	15.) Use facts about supplementary,	23.) Develop a probability model and
understandings of addition and	quantities in a real-world or	complementary, vertical, and adjacent	use it to find probabilities of events.
subtraction to add and subtract	mathematical problem, and	angles in a multistep problem to write	Compare probabilities from a model to
rational numbers; represent	construct simple equations and	and solve simple equations for an	observed frequencies; if the
addition and subtraction on a	inequalities to solve problems by	unknown angle in a figure. [7-G5]	agreement is not good, explain
horizontal or vertical number line	reasoning about the quantities. [7-		possible sources of the discrepancy. [7-
diagram. [7-NS1]	EE4]	13.) Describe the two-dimensional	SP7]
		figures that result from slicing three	
*5.) Apply and extend previous	*1.) Compute unit rates associated	dimensional figures, as in plane	24.) Find probabilities of compound
understandings of multiplication and	with ratios of fractions, including	sections of right rectangular prisms and	events using organized lists, tables,
division and of fractions to multiply	ratios of lengths, areas, and other	right rectangular pyramids. [7-G3]	tree diagrams, and simulation. [7-SP8]
and divide rational numbers. [7-NS2]	quantities measured in like or		
	different units. [7-RP1]	14.) Know the formulas for the area	17.) Understand that statistics can be
6.) Solve real-world and		and circumference of a circle, and use	used to gain information about a
mathematical problems involving	2.) Recognize and represent	them to solve problems; give an	population by examining a sample of
the four operations with rational	proportional relationships between	informal derivation of the relationship	the population; generalizations about
numbers. (Computations with	quantities. [7-RP2]	between the circumference and area of	a population from a sample are valid
rational numbers extend the rules		a circle. [7- G4]	only if the sample is representative of
for manipulating fractions to	*3.) Use proportional relationships		that population. Understand that
complex fractions.) [7-NS3]	to solve multistep ratio and percent	16.) Solve real-world and	random sampling tends to produce
	problems. [7-RP3]	mathematical problems involving area,	representative samples and support
*7.) Apply properties of operations		volume, and surface area of two- and	valid inferences. [7-SP1]
as strategies to add, subtract, factor,	11.) Solve problems involving scale	three dimensional objects composed of	
and expand linear expressions with	drawings of geometric figures,	triangles, quadrilaterals, polygons,	

rational coefficients. [7-EE1]

- *8.) Understand that rewriting an expression in different forms in a problem context can shed light on the problem, and how the quantities in it are related. [7-EE2]
- 9.) Solve multistep real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form, convert between forms as appropriate, and assess the reasonableness of answers using mental computation and estimation strategies. [7-EE3]

including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale. [7-G1]

12.) Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle. [7-G2]

cubes, and right prisms. [7-G6]

- 21.) Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around 1/2 indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event. [7-SP5]
- 22.) Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability. [7-SP6]

- 18.) Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions. [7- SP2]
- 19.) Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability. [7-SP3]
- 20.) Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations. [7-SP4]

Power Standards

** power standards are indicated with an asterisk **

These standards are those that are essential for student grade-level success.