Name

Practice with Examples

For use with pages 421-428

GOAL Identify and use translations in the plane.

Vocabulary

A **translation** is a transformation that maps every two points *P* and *Q* in the plane to points *P'* and *Q'*, so that the following properties are true: 1) PP' = QQ' and 2) $\overline{PP'} \| \overline{QQ'}$, or $\overline{PP'}$ and $\overline{QQ'}$ are collinear.

A vector is a quantity that has both direction and *magnitude*, or size.

When a vector is drawn as ray \overrightarrow{PQ} , the **initial point**, or starting point, of the vector is point *P* and the **terminal point**, or ending point, of the vector is point *Q*.

The **component form** of a vector combines the horizontal and vertical components.

EXAMPLE 1 Using Theorem 7.5

In the diagram, a reflection in line k maps \overline{AB} to $\overline{A'B'}$, a reflection in line m maps $\overline{A'B'}$ to $\overline{A'B''}$, $k \parallel m$, AW = 7, and ZA'' = 3.

- **a**. Name some congruent segments.
- **b.** Does WZ = XY? Explain.
- **c.** What is the length of $\overline{AA''}$?

SOLUTION

- **a.** Here are some sets of congruent segments: \overline{AB} , $\overline{A'B'}$, and $\overline{A''B''}$; \overline{BX} and $\overline{XB'}$; $\overline{B'Y}$ and $\overline{YB''}$.
- **b.** Yes, WZ = XY because \overline{WZ} and \overline{XY} are opposite sides of a rectangle.
- **c.** Because AA'' = BB'', the length of $\overline{AA''}$ is 7 + 7 + 3 + 3, or 20 units.

Date

Practice with Examples

For use with pages 421–428

Exercises for Example 1

In the diagram $k \parallel m$, $\triangle XYZ$ is reflected in line k, and $\triangle X'Y'Z'$ is reflected in line m.

- **1.** Name two segments parallel to $\overline{YY''}$.
- If the length of ZZ" is 6 cm, what is the distance between k and m?
- **3.** A translation maps $\triangle XYZ$ onto which triangle?
- **4.** Which lines are perpendicular to $\overline{XX''}$?

EXAMPLE 2 Translations in a Coordinate Plane

Sketch a quadrilateral with vertices A(0, 4), B(-2, 1), C(0, -3), and D(3, 4). Then sketch the image of the quadrilateral after the translation $(x, y) \rightarrow (x + 2, y - 1)$.

SOLUTION

Plot the points as shown. Shift each point 2 units to the right and 1 unit down to find the translated vertices.

In Exercises 5–8, copy figure *PQRS* and draw its image after the translation.

131

Date

LESSON

CONTINUED

Practice with Examples

For use with pages 421-428

7.
$$(x, y) \rightarrow (x - 2, y - 2)$$

EXAMPLE 3 Finding Vectors

In the diagram, $\triangle ABC$ maps onto $\triangle A'B'C'$ by a translation. Write the component form of the vector that can be used to describe the translation.

SOLUTION

Choose any vertex and its image, say A and A'. To move from A to A', you move 3 units to the right and 5 units down. The component form of the vector is $\langle 3, -5 \rangle$.

Exercises for Example 3

In Exercises 9 and 10, write the component form of the vector that describes the translation which maps $\triangle ABC$ onto $\triangle A'B'C'$.

9. *A*(3, 6), *B*(1, 0), *C*(4, 8); *A*'(1, 2), *B*'(-1, -4), *C*'(2, 4)

10. A(-6, -2), B(-5, 3), C(1, -1); A'(-3, -5), B'(-2, 0), C'(4, -4)

132