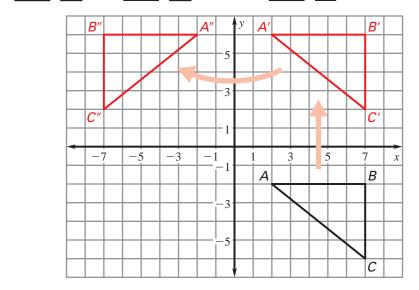
7.5 Glide Reflections and Compositions

Goals • Identify glide reflections in a plane.

• Represent transformations as compositions of simpler transformations.

VOCABULARY			
Glide reflection			
Composition			


Example 1

Finding the Image of a Glide Reflection

Sketch the image of $\triangle ABC$ after a glide reflection.

Translation: $(x, y) \rightarrow (x, y + 8)$ **Reflection:** in the *y*-axis

Translate $\triangle ABC$ by moving it _____ units _____ to produce $\triangle A'B'C'$. The vertices of $\triangle A'B'C'$ are $A'(_,_), B'(_,_)$, and $C'(_,_)$. Next, reflect $\triangle A'B'C'$ in the *y*-axis to produce $\triangle A''B''C''$. Its vertices are $A''(_,_), B''(_,_)$, and $C''(_,_)$.

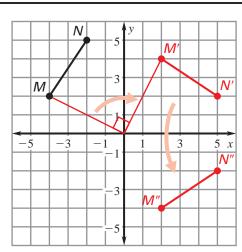
Checkpoint Write the coordinates of the image of P(4, -2) after the given glide reflection.

1. Translation: $(x, y) \rightarrow (x + 4, y)$ Reflection: in the <i>x</i> -axis	2. Translation: $(x, y) \rightarrow (x, y - 6)$ Reflection: in the <i>y</i> -axis

THEOREM 7.6: COMPOSITION THEOREM

The composition of two (or more) isometries is an isometry.

Example 2 Finding the Image of a Composition


Sketch the image of \overline{MN} after a composition of the given rotation and reflection.

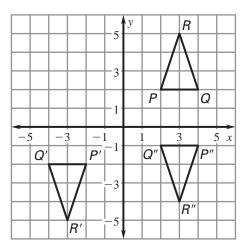
M(-4, 2), N(-2, 5)

Rotation: 90° clockwise about the origin **Reflection:** in the *x*-axis

Solution

The graph of \overline{MN} is shown.

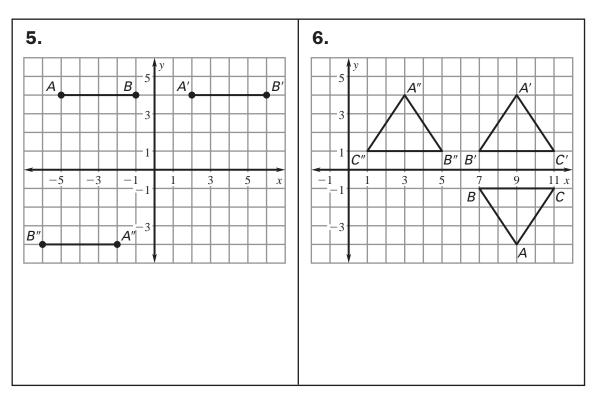
Rotate \overline{MN} 90° about the origin to produce $\overline{M'N'}$. The endpoints of $\overline{M'N'}$ are $M'(_,_)$ and $N'(_,_)$.


Reflect $\overline{M'N'}$ in the *x*-axis to produce $\overline{M''N''}$. The endpoints of $\overline{M''N''}$ are $M''(_,_)$ and $N''(_,_)$.

Example 3 Describing a Composition

Describe the composition of transformations in the diagram.

Solution


Two transformations are shown. First, $\triangle PQR$ is rotated _____° about the origin to produce $\triangle P'Q'R'$. Then $\triangle P'Q'R'$ is translated using $(x, y) \rightarrow (____, ____)$ to produce $\triangle P''Q''R''$.

Checkpoint Write the coordinates of the image of A(-3, 5) after a composition using the given transformations in the order they appear.

4. Rotation: 180 $^{\circ}$ about the
origin
Reflection: in the <i>y</i> -axis

Describe the composition of the transformations.

