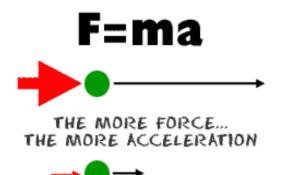

Newton's Second Law

- Newton's 2nd Law states: acceleration of an object increases w/ increased force and decreases w/ increased mass.
 - Object will accelerate in the direction of the force.
 - Force can change an object's direction w/o changing an object's speed
 - Ex. soccer player dribbling a soccer ball



of Motion

Newton's Second Law

The unbalanced force acting on an object equals the object's mass times its acceleration.

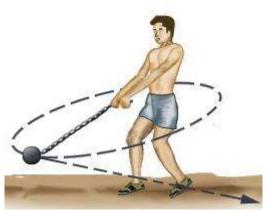
Force is measured in Newtons (N) $1 \text{ N} = 1 \text{kg X 1 m/s}^2$

- 1. What is the net force necessary for a 1.6×10^3 kg automobile to accelerate forward at 2.0 m/s^2 ?
- 2. A baseball accelerates downward at 9.8 m/s². If the gravitational force is the only force acting on the baseball and is 1.4 N, what is the baseball's mass?
- 3. A sailboat and its crew have a combined mass of 655 kg. Ignoring frictional forces, if the sailboat experiences a net force of 895 N pushing it forward, what is the sailboat's acceleration?

Second Law Problems

How much force is needed to accelerate a 100 kg object at 6 m/s²?

What is the acceleration of an object that has a mass of 5 kg when a 10 N force is applied?


What is the mass of an abject that is accelerating at 10 m/s² when a 6 N force is applied?

Centripetal Force

- Any force that keeps an object moving in a circle = centripetal force
- Force points toward center of circle
 - Ex. ball on string whirling in circle

If let go of string, ball goes off in direction it was

going before string lost

