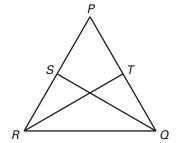
Practice with Examples

For use with pages 229-235

GOAL

Use congruent triangles to plan and write proofs

EXAMPLE 1


Planning and Writing a Proof

Given: $\overline{PR} \cong \overline{PQ}$, $\overline{SR} \cong \overline{TQ}$

Prove: $\overline{QS} \cong \overline{RT}$

Plan for Proof: \overline{QS} and \overline{RT} are corresponding parts of $\triangle PQS$ and $\triangle PRT$ and also of $\triangle RQS$ and $\triangle QRT$.

The first set of triangles is easier to prove congruent than the second set. Then use the fact that corresponding parts of congruent triangles are congruent.

SOLUTION

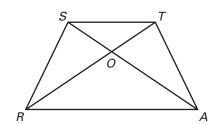
Statements

- 1. $\overline{PR} \cong \overline{PQ}$
- **2.** PR = PQ
- 3. PR = PS + SR
- **4.** PQ = PT + TQ
- $\mathbf{5.} \ PS + SR = PT + TQ$
- **6.** $\overline{SR} \cong \overline{TO}$
- 7. SR = TQ
- 8. PS = PT
- **9**. $\overline{PS} \cong \overline{PT}$
- **10.** $\angle P \cong \angle P$
- **11.** $\triangle PQS \cong \triangle PRT$
- **12.** $\overline{QS} \cong \overline{RT}$

Reasons

- **1.** Given
- 2. Definition of congruence
- **3.** Segment Addition Postulate
- 4. Segment Addition Postulate
- 5. Substitution
- 6. Given
- 7. Definition of congruence
- 8. Subtraction property of equality
- 9. Definition of congruence
- 10. Reflexive Property of Congruence
- 11. SAS Congruence Postulate
- **12.** Corresponding parts of congruent triangles are congruent.

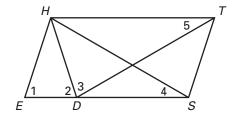
Practice with Examples


For use with pages 229-235

Exercises for Example 1

Use the given information to prove the desired statement.

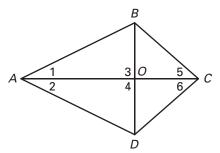
1. Given: $\overline{RT} \cong \overline{AS}$, $\overline{RS} \cong \overline{AT}$


Prove: $\angle TSA \cong \angle STR$

2. Given: $\angle 1 \cong \angle 2 \cong \angle 3$, $\overline{ES} \cong \overline{DT}$

.....

Prove: $\angle 4 \cong \angle 5$



EXAMPLE 2 Using More than One Pair of Triangles

Given: $\angle 1 \cong \angle 2$, $\angle 5 \cong \angle 6$

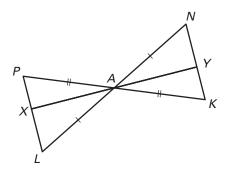
Prove: $\overline{AC} \perp \overline{BD}$

Plan for Proof: It can be helpful to reason backward from what is to be proved. You can show that $\overline{AC} \perp \overline{BD}$ if you can show $\angle 3 \cong \angle 4$. Notice that $\angle 3$ and $\angle 4$ are corresponding parts of $\triangle ABO$ and $\triangle ADO$. You can prove $\triangle ABO \cong \triangle ADO$ by SAS if you first prove $\overline{AB} \cong \overline{AD}$. \overline{AB} and \overline{AD} are corresponding parts of $\triangle ABC$ and $\triangle ADC$. You can prove $\triangle ABC \cong \triangle ADC$ by ASA.

Practice with Examples

For use with pages 229–235

SOLUTION

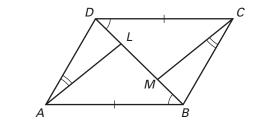

Statements	Reasons
1. $\angle 1 \cong \angle 2$, $\angle 5 \cong \angle 6$	1. Given
2. $\overline{AC} \cong \overline{AC}$	2. Reflexive Property of Congruence
3. $\triangle ABC \cong \triangle ADC$	3. ASA Congruence Postulate
$4. \ \overline{AB} \cong \overline{AD}$	4. Corresponding parts of congruent triangles are congruent.
5. $\overline{AO} \cong \overline{AO}$	5. Reflexive Property of Congruence
6. $\triangle ABO \cong \triangle ADO$	6. SAS Congruence Postulate
7. ∠3 ≅ ∠4	7. Corresponding parts of congruent triangles are congruent.
8. $\overline{AC} \perp \overline{BD}$	8. If 2 lines form congruent adjacent angles, then the lines are ⊥.

Exercises for Example 2

In Exercises 3 and 4, use the given information to prove the desired statement.

3. Given: $\overline{PA} \cong \overline{KA}$, $\overline{LA} \cong \overline{NA}$

Prove: $\overline{AX} \cong \overline{AY}$



4. Given: $\angle DAL \cong \angle BCM$,

$$\angle CDL \cong \angle ABM$$

$$\overline{DC} \cong \overline{BA}$$

Prove:
$$\overline{AL} \cong \overline{CM}$$

