

Name

Practice with Examples

For use with pages 212–219

Prove that triangles are congruent using the SSS and SAS Congruence Postulates

Postulate 19 Side-Side (SSS) Congruence Postulate If three sides of one triangle are congruent to three sides of a second triangle, then the two triangles are congruent.

Postulate 20 Side-Angle-Side (SAS) Congruence Postulate If two sides and the included angle of one triangle are congruent to two sides and the included angle of a second triangle, then the two triangles are congruent.

EXAMPLE 1

Using the SAS Congruence Postulate

Prove that $\triangle ABC \cong \triangle DEF$.

Date

SOLUTION

The marks on the diagram show that $\overline{AB} \cong \overline{DE}$, $\overline{BC} \cong \overline{EF}$, and $\angle B \cong \angle E$. So, by the SAS Congruence Postulate, you know that $\triangle ABC \cong \triangle DEF$.

Exercises for Example 1

State the congruence postulate you would use to prove that the two triangles are congruent.

.....

Practice with Examples

For use with pages 212–219

Name

EXAMPLE 2 Congruent Triangles in a Coordinate Plane

Use the SSS Congruence Postulate to show that $\triangle ABC \cong \triangle CDE$.

SOLUTION

Use the distance formula to show that corresponding sides are the same length. For all lengths, $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$. $AB = \sqrt{(-2 - (-4))^2 + (-2 - 2)^2}$ $CD = \sqrt{(4 - (-1))^2 + (1 - 0)^2}$

So, by the SSS Congruence Postulate, you know that $\triangle ABC \cong \triangle CDE$.

68

Practice with Examples

For use with pages 212–219

Name _

Exercise for Example 2

3. Prove that $\triangle ABC \cong \triangle DEF$.

Date _