Eureka Math

4th Grade Module 3 Lesson 4

At the request of elementary teachers, a team of Bethel & Sumner educators met as a committee to create Eureka slideshow presentations. These presentations are not meant as a script, nor are they required to be used. Please customize as needed. Thank you to the many educators who contributed to this project!

Directions for customizing presentations are available on the next slide.

This work by Bethel School District (<u>www.bethelsd.org</u>) is licensed under the Creative Commons Attribution Non-Commercial Share-Alike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Bethel School District Based this work on Eureka Math by Common Core (http://greatminds.net/maps/math/copyright) Eureka Math is licensed under a Creative Commons Attribution Non-Commercial-ShareAlike 4.0 License.

Customize this Slideshow

Reflecting your Teaching Style and Learning Needs of Your Students

- > When the Google Slides presentation is opened, it will look like Screen A.
- > Click on the "pop-out" button in the upper right hand corner to change the view.
- \succ The view now looks like Screen B.
- > Within Google Slides (not Chrome), choose FILE.
- ➤ Choose MAKE A COPY and rename your presentation.
- ➤ Google Slides will open your renamed presentation.
- ➤ It is now editable & housed in MY DRIVE.

Icons

Read, Draw, Write

Manipulatives Needed

Lesson 4

Objective: Interpret and represent patterns when multiplying by 10, 100, and 1,000 in arrays and numerically.

Suggested Lesson Structure

Fluency Practice
 Application Problem
 Concept Development
 Student Debrief

Total Time

(12 minutes) (4 minutes) (34 minutes) (10 minutes) (60 minutes)

I can interpret and represent patterns when multiplying by 10, 100, and 1,000 in arrays and numerically.

Rename the Unit

Materials:

Personal White boards

Rename the Unit

Rename the Unit

14 tens = 140

Rename the Unit

14 hundreds =

Rename the Unit

14 hundreds = 1,400

Rename the Unit

14 thousands =

Rename the Unit

14 thousands = 14,000

Rename the Unit

Rename the Unit

Rename the Unit

Rename the Unit

Rename the Unit

28 hundreds =

Rename the Unit

28 hundreds = 2,800

Rename the Unit

28 thousands =

Rename the Unit

28 thousands = 28,000

Group Count by Multiples of 10 and 100

Count by threes to 30.

Group Count by Multiples of 10 and 100

Now count by 3 tens.

When I raise my hand, stop counting.

Find the Area and Perimeter

On your personal white board, write a multiplication sentence to find the area.

Find the Area and Perimeter

Use the formula for perimeter to solve.

Find the Area and Perimeter

On your personal white board, write a multiplication sentence to find the area.

Find the Area and Perimeter

Use the formula for perimeter to solve.

Find the Area and Perimeter

This is a square. Say the length of each side

Find the Area and Perimeter

On your personal white board, write a multiplication sentence to find the area.

Find the Area and Perimeter

Use the formula for perimeter to solve.

Find the Area and Perimeter

This is a square. Say the length of each side

Find the Area and Perimeter

On your personal white board, write a multiplication sentence to find the area.

Find the Area and Perimeter

Use the formula for perimeter to solve.

2

Fluency Practice

Find the Area and Perimeter

The area is 10 square cm. On your white boards, write the division equation to find the width.

W

Find the Area and Perimeter

The area is 54 square cm. Write the division equation to find the width.

Find the Area and Perimeter

The area is 35 square cm. Write the division equation to find the width.

Application Problem

Samantha received an allowance of \$3 every week. By babysitting, she earned an additional \$30 every week.

How much money did Samantha have in four weeks, combining her allowance and her babysitting?

<u>Materials</u>

(T) Thousands place value chart

(S) Personal white boards, thousands place value chart (template)

How many do you see?

thousands	hundreds	tens	ones

How many groups of 3 ones do you see?

hundreds	tens	ones
	hundreds	hundreds tens

Suppose I wanted to multiply 3 ones by ten instead. How would I do that?

thousands	hundreds	tens	ones
			x10

Suppose I wanted to multiply 3 ones by ten instead. How would I do that?

thousands	hundreds	tens	ones
		000	×10

What if I wanted to multiply that by 10?

thousands	hundreds	tens	ones
	000	 000 ×10	x10

Look at my equation. I started with 3 ones. What did I multiply 3 ones by to get 3 hundreds?

thousands	hundreds	tens	ones
	000	x100	

Concept Development Work with your partner. How can you solve 3 x 1,000? thousands hundreds tens ones x10 x10 x10

What is $3 \times 10 \times 10 \times 10$ or $3 \times 1,000$?

Now repeat the process with four

thousands	hundreds	tens	ones

15 x 10

thousands	hundreds	tens	ones
	x10	x 10	

What is 1 ten x 10?

thousands	hundreds	tens	ones
	x10	x 10	

What is 5 ones x 10?

thousands	hundreds	tens	ones
	x10	x 10	

15 x 10 = ?

thousands	hundreds	tens	ones
	x10	x 10	

Now repeat that process using 22 x 100

thousands	hundreds	tens	ones

4 x 20

thousands	hundreds	tens	ones
		x10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

::

Just like 3 × 100 can be expressed as 3 × 10 × 10, there are different ways to show 4 × 20 to help us multiply.

What is another way that I could express 4 × 20?

thousands	hundreds	tens	ones
		x10	0 0 0 0 0 0 0 0 4 x 2

When multiplying with multiples of 10, you can decompose a factor to help you solve. In this example, we expressed 4 × 20 as (4 × 2) × 10.

thousands	hundreds	tens	ones
		x10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

With your partner, solve 6 x 400 using a simplifying strategy.

thousands	hundreds	tens	ones

With your partner, solve 4 x 500 using a simplifying strategy.

thousands	hundreds	tens	ones

12345 Pr	oble	3 M	Set	t
A STORY OF UNITS		Le	sson 4 Prok	olem Set
Name Example:		Da	ite	
5×10=	thousands	hundreds	tens	ones
$5 \text{ ones} \times 10 = 2 \text{ Tens}$			+10 20000	
to represent each product.	YY11			
1 5 100	thousands	hundrode	tons	onoc

5 ones × 100 = _____

Debrief

What is the difference between saying 10 more and 10 times as many?

What is another expression that has the same value as 10 × 800 and 1,000 × 8?

Think about the problems we solved during the lesson and the problems you solved in the Problem Set. When does the number of zeros in the factors not equal the number of zeros in the product?

Debrief

For Problem 4, 12 × 10 = 120, discuss with your partner whether or not this equation is true: 12 × 10 = 3 × 40. (Problem 7 features 3 × 40.)

How did the Application Problem connect to today's lesson?

Exit Ticket

A STORY OF UNITS

Lesson 4 Exit Ticket 4-3

Name		Date
Fill in the blanks in the following	g equations.	
a. 5 × 10 =	b × 5 = 500	c. 5,000 = × 1000
d. 10 × 2 =	e × 20 = 2,000	f. 2,000 = 10 ×
g. 100 × 18 =	h = 10 × 32	i. 4,800 =× 100