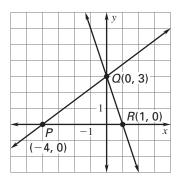
Name

Practice with Examples

For use with pages 172–178

LESSON


Use slope to identify perpendicular lines in a coordinate plane and write equations of perpendicular lines

VOCABULARY

Postulate 18 *Slopes of Perpendicular Lines* In a coordinate plane, two nonvertical lines are perpendicular if and only if the product of their slopes is -1.

EXAMPLE 1 Deciding Whether Lines are Perpendicular

a. Decide whether \overrightarrow{PQ} and \overrightarrow{QR} are perpendicular.

b. Decide whether the lines are perpendicular.

Line $\ell: 2x - 3y = -4$ Line k: 3x + 2y = 3

SOLUTION

a. Find each slope.

Slope of $\overrightarrow{PQ} = \frac{3-0}{0-(-4)} = \frac{3}{4}$

Slope of $\overleftarrow{QR} = \frac{0-3}{1-0} = \frac{-3}{1} = -3$

Multiply slopes to see if the lines are perpendicular.

$$\frac{3}{4} \cdot (-3) = -\frac{9}{4}$$

The product of the slopes is not -1. So, \overrightarrow{PQ} and \overrightarrow{QR} are not perpendicular.

Name

Practice with Examples

For use with pages 172–178

b. Rewrite each equation in slope-intercept form to find the slope.

Line ℓ : $y = \frac{2}{3}x + \frac{4}{3}$ slope $= \frac{2}{3}$ Multiply the slopes to see if the lines are perpendicular. $\left(\frac{2}{3}\right) \cdot \left(-\frac{3}{2}\right) = -1$, so the lines are perpendicular.

Exercises for Example 1

Decide whether lines k and ℓ are perpendicular.

1. *k* passes through (3, 2) and (-1, 5)

 ℓ passes through (0, 2) and (3, 6)

2. *k* has the equation 2x - 4y = -3

 ℓ has the equation x + 2y = -6

Date

.....

59

NAME

Practice with Examples

For use with pages 172–178

EXAMPLE 2 Writing the Equation of a Perpendicular Line

Line *k* has equation $y = \frac{2}{3}x - \frac{4}{3}$. Find an equation of line ℓ that passes through P(3, -1) and is perpendicular to *k*.

SOLUTION

First determine the slope of ℓ . For *k* and ℓ to be perpendicular, the product of their slopes must equal -1.

$$m_{k} \cdot m_{\ell} = -1$$

$$\frac{2}{3} \cdot m_{\ell} = -1$$

$$m_{\ell} = -\frac{3}{2}$$
Then use $m = -\frac{3}{2}$ and $(x, y) = (3, -1)$ to find b .
$$y = mx + b$$

$$-1 = -\frac{3}{2} \cdot (3) + b$$

$$\frac{7}{2} = b$$

So, an equation of ℓ is $y = -\frac{3}{2}x + \frac{7}{2}$

Exercises for Example 2

Line *j* is perpendicular to the line with the given equation and line *j* passes through *P*. Write an equation of line *j*.

3.
$$4x + 7y = 13$$
, $P(-2, 6)$ **4.** $5x - 2y = 3$, $P\left(0, -\frac{3}{2}\right)$ **5.** $x + 5y = 6$, $P(-1, 2)$

60