Name

Practice with Examples

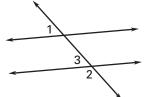
For use with pages 150–156

Prove that two lines are parallel and use properties of parallel lines to solve problems

Date

Vocabulary

Postulate 16 *Corresponding Angles Converse* If two lines are cut by a transversal so that corresponding angles are congruent, then the lines are parallel.


Theorem 3.8 *Alternate Interior Angles Converse* If two lines are cut by a transversal so that alternate interior angles are congruent, then the lines are parallel.

Theorem 3.9 *Consecutive Interior Angles Converse* If two lines are cut by a transversal so that consecutive interior angles are supplementary, then the lines are parallel.

Theorem 3.10 *Alternate Exterior Angles Converse* If two lines are cut by a transversal so that alternate exterior angles are congruent, then the lines are parallel.

EXAMPLE 1 Proving that Two Lines are Parallel

Prove that lines *j* and *k* are parallel.

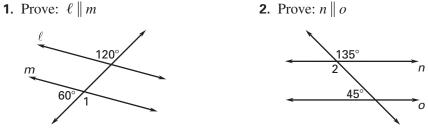
SOLUTION

Given: $m \angle 1 = 53^{\circ}$

 $m \angle 2 = 127^{\circ}$

Prove: $j \parallel k$

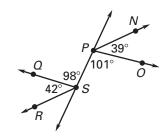
Statements	Reasons
1. $m \angle 1 = 53^{\circ}$	1. Given
$m \angle 2 = 127^{\circ}$	
2. $m \angle 3 + m \angle 2 = 180^{\circ}$	2. Linear Pair Postulate
3. $m \angle 3 + 127^{\circ} = 180^{\circ}$	3. Substitute.
4. $m \angle 3 = 53^{\circ}$	4. Subtract.
5. ∠3 ≅ ∠1	5 . Substitute.
6. $j \parallel k$	6. Corresponding Angles Converse


Name

Practice with Examples

For use with pages 150–156

Exercises for Example 1


Prove the statement from the given information.

EXAMPLE 2 Identifying Parallel Lines

Determine which rays are parallel.

- **a.** Is \overrightarrow{PN} parallel to \overrightarrow{SR} ?
- **b.** Is \overrightarrow{PO} parallel to \overrightarrow{SQ} ?

.....

SOLUTION

a. Decide whether
$$P\dot{N} \parallel S\dot{R}$$

 $m \angle NPS = 39^{\circ} + 101^{\circ}$
 $= 140^{\circ}$

$$m \angle RSP = 42^\circ + 98^\circ$$

$$= 140^{\circ}$$

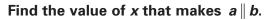
 $\angle NPS$ and $\angle RSP$ are congruent alternate interior angles, so $\overrightarrow{PN} \parallel \overrightarrow{SR}$.

b. Decide whether $\overrightarrow{PO} \parallel \overrightarrow{SQ}$.

$$m \angle OPS = 101^{\circ}$$

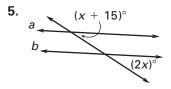
 $m \angle PSQ = 98^{\circ}$

 $\angle OPS$ and $\angle PSQ$ are alternate interior angles, but they are not congruent, so $\overrightarrow{PO} \parallel \overrightarrow{SQ}$ are not parallel.



Practice with Examples

For use with pages 150–156


Name _

Exercises for Example 2

3. h $(2x - 120)^{\circ}$

4. а $(4x)^{\circ}$ $(2x)^{\circ}$

Date _

.....

51