
3-2 Quick Check - Translations

For Items 1 and 2, use $\triangle ABC$.

1. What are the vertices of $\triangle A'B'C'$ produced by

 $T_{\langle -3, 6 \rangle} (\triangle ABC) = \triangle A'B'C'?$

- **A** A'(0, 6), B'(0, 4), C'(-3, 3)
- **B** A'(6, 6), B'(6, 4), C'(3, 3)
- **C** A'(0, -6), B'(0, -8), C'(-3, 9)
- **D** A'(6, -6), B'(6, -8), C'(3, 9)

- **2.** Suppose $\triangle DEF$ is the image of a translation of $\triangle ABC$. If *D* is at
 - (-6, -2), what translation rule maps $\triangle ABC$ to $\triangle DEF$?
 - $\mathbf{A} \quad T_{(9, 2)} (\triangle ABC) = \triangle DEF$
 - **B** $T_{(9, -2)}$ ($\triangle ABC$) = $\triangle DEF$
 - **C** $T_{\langle -9, 2 \rangle}$ ($\triangle ABC$) = $\triangle DEF$
 - $D \qquad T_{\langle -9, -2 \rangle} (\triangle ABC) = \triangle DEF$
- **3.** Suppose the equation of line *p* is x = 2 and the equation of line *q* is x = -1. What translation is equivalent to $(R_p \circ R_q)(\triangle ABC)$?
- **4.** What is the composition of the translations $(T_{(-3, 4)} \circ T_{(8, -7)})(x, y)$ as one translation?
- **5.** How far apart are parallel lines *m* and *n* such that $T_{(0, -12)}(\triangle XYZ) = (R_n \circ R_m)(\triangle XYZ)$?