About the AP Calculus AB and BC Courses AP Calculus AB and AP Calculus BC focus on students' understanding of calculus concepts and provide experience with methods and applications. Through the use of big ideas of calculus (e.g., modeling change, approximation and limits, and analysis of functions), each course becomes a cohesive whole, rather than a collection of unrelated topics. Both courses require students to use definitions and theorems to build arguments and justify conclusions. The courses feature a multirepresentational approach to calculus, with concepts, results, and problems expressed graphically, numerically, analytically, and verbally. Exploring connections among these representations builds understanding of how calculus applies limits to develop important ideas, definitions, formulas, and theorems. A sustained emphasis on clear communication of methods, reasoning, justifications, and conclusions is essential. Teachers and students should regularly use technology to reinforce relationships among functions, to confirm written work, to implement experimentation, and to assist in interpreting results. #### College Course Equivalent AP Calculus AB is designed to be the equivalent of a first semester college calculus course devoted to topics in differential and integral calculus. AP Calculus BC is designed to be the equivalent to both first and second semester college calculus courses. AP Calculus BC applies the content and skills learned in AP Calculus AB to parametrically defined curves, polar curves, and vector-valued functions; develops additional integration techniques and applications; and introduces the topics of sequences and series. #### Prerequisites Before studying calculus, all students should complete the equivalent of four years of secondary mathematics designed for college-bound students: courses that should prepare them with a strong foundation in reasoning with algebraic symbols and working with algebraic structures. Prospective calculus students should take courses in which they study algebra, geometry, trigonometry, analytic geometry, and elementary functions. These functions include linear, polynomial, rational, exponential, logarithmic, trigonometric, inverse trigonometric, and piecewise-defined functions. In particular, before studying calculus, students must be familiar with the properties of functions, the composition of functions, the algebra of functions, and the graphs of functions. Students must also understand the language of functions (domain and range, odd and even, periodic, symmetry, zeros, intercepts, and descriptors such as increasing and decreasing). Students should also know how the sine and cosine functions are defined from the unit circle and know the values of the trigonometric functions at the numbers 0, $\frac{\pi}{6}$, $\frac{\pi}{4}$, $\frac{\pi}{3}$, $\frac{\pi}{2}$, and their multiples. Students who take AP Calculus BC should have basic familiarity with sequences and series, as well as some exposure to parametric and polar equations. ## Course at a Glance #### Plan The Course at a Glance provides a useful visual organization of the AP Calculus AB and AP Calculus BC curricular components, including: - Sequence of units, along with approximate weighting and suggested pacing. Please note, pacing is based on 45-minute class periods, meeting five days each week for a full academic year. - Progression of topics within each unit. - Spiraling of the big ideas and mathematical practices across units. #### Teach #### MATHEMATICAL PRACTICES Mathematical practices spiral throughout the course. Implementing Mathematical Processes Justification Communication and Notation Connecting Representations #### BIG IDEAS Big ideas spiral across topics and units. CHA Change LIM Limits FUN Analysis of Functions #### BC ONLY The purple shading represents BC only content. #### Assess Assign the Personal Progress Checks—either as homework or in class—for each unit. Each Personal Progress Check contains formative multiple-choice and free-response questions. The feedback from the Personal Progress Checks shows students the areas where they need to focus. #### Limits and Continuity AP EXAM WEIGHTING LIM LIM 2 10-12% AB 4-7% BC CLASS PERIODS ~22-23 AB ~13-14 BC CHA 1.1 Introducing Calculus: Can Change Occur at an Instant? 1.2 Defining Limits and Using Limit Notation 1.3 Estimating Limit Values from Graphs 1.4 Estimating Limit Values from Tables 1.5 Determining Limits Using Algebraic Properties of Limits 1.6 Determining Limits Using Algebraic Manipulation 1.7 Selecting Procedures for Determining Limits 1.8 Determining Limits Using the Squeeze Theorem 1.9 Connecting Multiple Representations of Limits 1.10 Exploring Types of Discontinuities 1.11 Defining Continuity at a Point 1.12 Confirming Continuity over an Interval 1.13 Removing Discontinuities 1.14 Connecting Infinite Limits and Vertical Asymptotes 1.15 Connecting Limits at Infinity and Horizontal Asymptotes 1.16 Working with the Intermediate Value Theorem (IVT) **2** CHA CHA 4 Differentiation: Definition and Basic Derivative Rules AP EXAM WEIGHTING 10-12% AB 4-7% BC CLASS PERIODS ~13-14 AB ~13-14 AB ~9-10 BC 2.1 Defining Average and Instantaneous Rates of Change at a Point 2.2 Defining the Derivative of a Function and Using Derivative Notation 2.3 Estimating Derivatives of a Function at a Point 2.4 Connecting Differentiability and Continuity: Determining When Derivatives Do and Do Not Exist 2.5 Applying the Power Rule 2.6 Derivative Rules: Constant, Sum, Difference, and Constant Multiple **2.7** Derivatives of $\cos x$, $\sin x$, e^x , and $\ln x$ **2.8** The Product Rule FUN 2.9 The Quotient Rule 2.10 Finding the Derivatives of Tangent, Cotangent, Secant, and/or Cosecant Functions #### Personal Progress Check 1 Multiple-choice: ~45 questions Free-response: 3 questions (partial) #### Personal Progress Check 2 Multiple-choice: ~30 questions Free-response: 3 questions (partial) ## **3** #### Differentiation: Composite, Implicit, and Inverse Functions AP EXAM WEIGHTING 9-13% AB 4-7% BC CLASS PERIODS ~10-11 AB ~8-9 BC | FUN
1 | 3.1 | The Chain Rule | |----------|-----|--| | FUN
1 | 3.2 | Implicit Differentiation | | FUN
3 | 3.3 | Differentiating Inverse
Functions | | FUN
1 | 3.4 | Differentiating
Inverse Trigonometric
Functions | | FUN
1 | 3.5 | Selecting Procedures
for Calculating
Derivatives | | FUN
1 | 3.6 | Calculating Higher-
Order Derivatives | #### Contextual Applications of Differentiation AP EXAM WEIGHTING 10-15% AB 6-9% BC CLASS PERIODS ~10-11 AB ~6-7 BC | CHA
1 | 4.1 | Interpreting the
Meaning of the
Derivative in Context | |----------|-----|---| | CHA
1 | 4.2 | Straight-Line
Motion: Connecting
Position, Velocity, and
Acceleration | | CHA
2 | 4.3 | Rates of Change in
Applied Contexts Other
Than Motion | | CHA
1 | 4.4 | Introduction to Related
Rates | | CHA
3 | 4.5 | Solving Related Rates
Problems | | CHA
1 | 4.6 | Approximating Values
of a Function Using
Local Linearity and
Linearization | | 3 | 4.7 | Using L'Hospital's Rule
for Determining Limits
of Indeterminate Forms | #### Analytical Applications of Differentiation AP EXAM WEIGHTING 15-18% AB 8-11% BC CLASS PERIODS ~15-16 AB ~10-11 BC | FUN
3 | 5.1 | Using the Mean Value
Theorem | |---------------|------|--| | FUN
3 | 5.2 | Extreme Value Theorem,
Global Versus Local
Extrema, and Critical
Points | | FUN
2 | 5.3 | Determining Intervals
on Which a Function Is
Increasing or Decreasing | | FUN
3 | 5.4 | Using the First
Derivative Test to
Determine Relative
(Local) Extrema | | FUN
1 | 5.5 | Using the Candidates
Test to Determine
Absolute (Global)
Extrema | | FUN
2 | 5.6 | Determining Concavity
of Functions over Their
Domains | | FUN
3 | 5.7 | Using the Second
Derivative Test to
Determine Extrema | | FUN
2 | 5.8 | Sketching Graphs of
Functions and Their
Derivatives | | FUN
2 | 5.9 | Connecting a Function,
Its First Derivative, and
Its Second Derivative | | FUN
2 | 5.10 | Introduction to
Optimization Problems | | FUN
3 | 5.11 | Solving Optimization
Problems | | FUN
1
3 | 5.12 | Exploring Behaviors of
Implicit Relations | #### UNIT 6 #### Integration and Accumulation of Change AP EXAM WEIGHTING 17-20% AB 17-20% BC CLASS PERIODS ~18-20 AB ~15-16 BC | CHA
4 | 6.1 | Exploring
Accumulations of
Change | |----------|------|---| | LIM
1 | 6.2 | Approximating Areas with Riemann Sums | | LIM
2 | 6.3 | Riemann Sums,
Summation Notation,
and Definite Integral
Notation | | FUN
1 | 6.4 | The Fundamental
Theorem of Calculus
and Accumulation
Functions | | FUN
2 | 6.5 | Interpreting
the Behavior of
Accumulation Functions
Involving Area | | FUN
3 | 6.6 | Applying Properties of
Definite Integrals | | FUN
3 | 6.7 | The Fundamental
Theorem of Calculus
and Definite Integrals | | FUN
4 | 6.8 | Finding Antiderivatives
and Indefinite
Integrals: Basic Rules
and Notation | | FUN
1 | 6.9 | Integrating Using
Substitution | | FUN
1 | 6.10 | Integrating Functions
Using Long Division
and Completing the
Square | | FUN
1 | 6.11 | Integrating Using
Integration by Parts
BC ONLY | | FUN
1 | 6.12 | Using Linear Partial
Fractions BC ONLY | | LIM
1 | 6.13 | Evaluating Improper Integrals BC ONLY | | FUN
1 | 6.14 | Selecting Techniques for Antidifferentiation | #### **Differential** UNIT **Equations** AP EXAM WEIGHTING 6-12% AB | CLASS PE | RIOD | S ~8-9 AB ~9-10 BG | |----------|------|--| | FUN
2 | 7.1 | Modeling Situations
with Differential
Equations | | FUN
3 | 7.2 | Verifying Solutions for
Differential Equations | | FUN
2 | 7.3 | Sketching Slope Fields | | FUN
4 | 7.4 | Reasoning Using Slope
Fields | | FUN
1 | 7.5 | Approximating
Solutions Using Euler's
Method BC ONLY | | FUN
1 | 7.6 | Finding General
Solutions Using
Separation of Variables | | FUN
1 | 7.7 | Finding Particular
Solutions Using
Initial Conditions and
Separation of Variables | | FUN
3 | 7.8 | Exponential Models with Differential Equations | 7.9 Logistic Models with **Differential Equations** BC ONLY #### UNIT 8 ### Applications of Integration AP EXAM WEIGHTING 10-15% AB 6-9% BC CLASS PERIODS ~19-20 AB ~13-14 BC | CHA
1 | 8.1 | Finding the Average
Value of a Function on
an Interval | |----------|------|--| | CHA
1 | 8.2 | Connecting Position, Velocity, and Acceleration of Functions Using Integrals | | СНА
3 | 8.3 | Using Accumulation
Functions and Definite
Integrals in Applied
Contexts | | CHA
4 | 8.4 | Finding the Area
Between Curves
Expressed as
Functions of x | | CHA
1 | 8.5 | Finding the Area
Between Curves
Expressed as
Functions of y | | CHA
2 | 8.6 | Finding the Area
Between Curves That
Intersect at More Than
Two Points | | CHA
3 | 8.7 | Volumes with Cross
Sections: Squares and
Rectangles | | CHA
3 | 8.8 | Volumes with Cross
Sections: Triangles and
Semicircles | | CHA
3 | 8.9 | Volume with Disc
Method: Revolving
Around the x- or y-Axis | | CHA
2 | 8.10 | Volume with Disc
Method: Revolving
Around Other Axes | | CHA
4 | 8.11 | Volume with Washer
Method: Revolving
Around the <i>x</i> - or <i>y</i> -Axis | | CHA
2 | 8.12 | Volume with Washer
Method: Revolving
Around Other Axes | | CHA
3 | 8.13 | The Arc Length of a
Smooth, Planar Curve
and Distance Traveled
BC ONLY | #### Personal Progress Check 6 #### Multiple-choice: - ~25 questions (AB) - ~35 questions (BC) Free-response: 3 questions #### Personal Progress Check 7 #### Multiple-choice: - ~15 questions (AB) - ~20 questions (BC) Free-response: 3 questions #### Personal Progress Check 8 Multiple-choice: ~30 questions Free-response: 3 questions Parametric Equations, Polar Coordinates, and Vector-Valued Functions BC ONLY AP EXAM WEIGHTING N/A AB 11-12% BC CLASS PERIODS N/A AB ~10-11 BC | CHA
2 | 9.1 | Defining and
Differentiating
Parametric Equations | |----------|-----|---| | CHA | 9.2 | Second Derivatives | | СНА | 9.3 | Finding Arc Lengths | | |-----|-----|---------------------|--| | | | of Curves Given | | | 1 | | by Parametric | | | | | Equations | | **Equations** | СНА | 9.4 Defining and | |-----|-------------------------| | | Differentiating Vector- | | | Valued Functions | | FUN | 9.5 | Integrating Vector- | |-----|-----|---------------------| | | | Valued Functions | | FUN | 9.6 | Solving Motion | |-----|-----|------------------------| | | | Problems Using | | 1 | | Parametric and Vector- | | | | Valued Functions | | FUN | 9.7 Defining Polar | |-----|--------------------| | | Coordinates and | | 2 | Differentiating in | | | Polar Form | | HA | 9.8 | Find the Area of a Pola | |----|-----|-------------------------| | | | Region or the Area | | 3 | | Bounded by a Single | | | | Polar Curve | | CHA | 9.9 | Finding the Area of the | | | |-----|-----|-------------------------|--|--| | | | Region Bounded by | | | | 3 | | Two Polar Curves | | | #### UNIT 10 #### Infinite Sequences and Series BC ONLY AP EXAM WEIGHTING N/A AB 17-18% BC | CLASS | PERIODS | N/A AB | ~17-18 вс | | |---------------|---------|--|------------|--| | LIM
3 | 10.1 | Defining Co
and Diverge
Series | | | | LIM
3 | 10.2 | Working with
Geometric Series | | | | LIM
3 | 10.3 | The <i>n</i> th Ter
Divergence | m Test for | | | LIM
3 | 10.4 | Integral Tes
Convergence | | | | LIM
3 | 10.5 | Harmonic S
p-Series | eries and | | | LIM
3 | 10.6 | Comparison
Convergence | | | | LIM
3 | 10.7 | Alternating
for Converg | | | | LIM
3 | 10.8 | Ratio Test f
Convergence | | | | LIM
3 | 10.9 | Determining
or Condition
Convergence | nal | | | LIM
1 | 10.10 | Alternating
Error Bound | | | | LIM
3
2 | 10.11 | Finding Tay
Polynomial
Approximat
of Function | ions | | | LIM
1 | 10.12 | Lagrange E | rror Bound | | | LIM
2 | 10.13 | Radius and
of Converge
Power Serie | ence of | | | LIM
2 | 10.14 | Finding Tay
Maclaurin S
a Function | | | | LIM
3 | 10.15 | Representir
Functions a | | | **Power Series**