Practice with Examples

For use with pages 109–116

Use angle congruence properties and prove properties about special pairs of angles

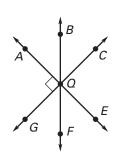
Vocabulary

Theorem 2.2 Properties of Angle Congruence Angle congruence is reflexsive, symmetric, and transitive.

Theorem 2.3 Right Angle Congruence Theorem All right angles are congruent.

Theorem 2.4 Congruent Supplements Theorem If two angles are supplementary to the same angle (or to congruent angles) then they are congruent.

Theorem 2.5 Congruent Complements Theorem If two angles are complentary to the same angle (or to congruent angles) then the two angles are congruent.


Psotulate 12 Linear Pair Postulate If two angles form a linear pair, then they are supplementary.

Theorem 2.6 Vertical Angles Theorem Vertical angels are congruent.

EXAMPLE 1 Finding Angles

Complete the statement given that $m \angle AQG = 90^{\circ}$.

- **a.** $m \angle CQE = ?$
- **b.** If $m \angle BQG = 113^\circ$, then $m \angle EQF = ?$
- **c.** $m \angle AQG + m \angle EQF + m \angle BQC = ?$

Date

SOLUTION

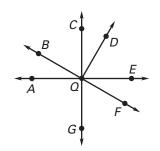
- **a.** $\angle CQE$ and $\angle AQC$ are vertical angles. By Theorem 2.6, they are congruent. By the definition of congruence, $m \angle CQE = m \angle AQG$, so $m \angle CQE = 90^{\circ}$.
- **b.** By the Angle Sum Theorem, $m \angle BQG = m \angle AQG + m \angle AQB$. Substituting, you get $113^\circ = 90^\circ + m \angle AQB$, so $m \angle AQB = 23^\circ$ by subtracting. Finally, $\angle EQF \cong \angle AQB$ because they are vertical angles. So, $m \angle EQF = 23^\circ$.
- **c.** $m \angle AQG + m \angle AQB + m \angle BQC = 180^{\circ}$. $\angle EQF \cong \angle AQB$ because they are vertical angles. So, $m \angle AQG + m \angle EQF + m \angle BQC = 180^{\circ}$.

37

LESSON 2.6

Practice with Examples

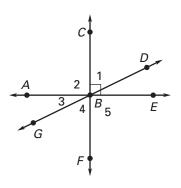
For use with pages 109–116


NAME

Exercises for Example 1

Complete the statement given that $m \angle BQD = m \angle CQE = 90^{\circ}$. Explain your reasoning.

1. $m \angle AQG = ?$


2. $m \angle CQA = ?$

- **3.** If $m \angle CQD = 31^\circ$, then $m \angle EQF = ?$
- **4.** If $m \angle BQG = 125^\circ$, then $m \angle CQF = ?$
- 5. $m \angle AQB + m \angle GQF + m \angle EQG = ?$
- 6. If $m \angle EQF = 38^\circ$, then $m \angle BQC = ?$

EXAMPLE 2 Finding Angles

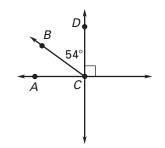
Find the measure of each numbered angle, given that $m \angle DBE = 26^{\circ}$.

SOLUTION

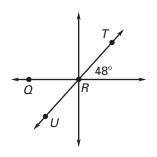
 $\angle CBD$ and $\angle DBE$ are complementary. So, $m \angle 1 = 90^\circ - 26^\circ = 64^\circ$. $\angle ABC$ and $\angle CBE$ are supplementary. So, $m \angle 2 = 180^\circ - 90^\circ = 90^\circ$. $\angle ABG$ and $\angle DBE$ are vertical angles. So, $m \angle 3 = 26^\circ$. $\angle GBF$ and $\angle CBD$ are vertical angles. So, $m \angle 4 = 64^\circ$. $\angle EBF$ and $\angle CBE$ are supplementary. So, $m \angle 5 = 180^\circ - 90^\circ = 90^\circ$.

38

Practice with Examples


For use with pages 109–116

NAME _


Exercises for Example 2

Find the measure of each indicated angle.

7. $\angle ACD$ and $\angle ACB$

8. $\angle QRT$ and $\angle QRU$

Date _

....

39