NAME

LESSON

Practice with Examples

For use with pages 102–107

GOAL Write reasons for steps in a proof about segments

VOCABULARY

A true statement that follows as a result of other true statements is called a theorem.

A two-column proof has numbered statements and reasons that show the logical order of an argument.

A proof can be written in paragraph form, called a **paragraph** proof.

Theorem 2.1 Properties of Segment Congruence

Segment congruence is reflexive, symmetric, and transitive.

EXAMPLE 1 Using Congruence

Use the diagram and the given information to complete the missing steps and reasons in the proof.

Given: AD = 8, BC = 8, $\overline{BC} \cong \overline{CD}$

Prove: $\overline{AD} \cong \overline{CD}$

Statements	Reasons		
1. a.	1 . Given		
2. $BC = 8$	2. b.		
3. c.	3 . Transitive	e property of equality	
4. d.	4 . Definition	n of congruent segments	
5. $\overline{BC} \cong \overline{CD}$	5. e.		
6. $\overline{AD} \cong \overline{CD}$	6. f.		
SOLUTION			
a. $AD = 8$	b . Given	c. $AD = BC$	d. $\overline{AD} \cong \overline{BC}$
e. Given	f . Transitive property of congruence		

e. Given

Chapter 2

34

Practice with Examples

For use with pages 102–107

Name

Exercise for Example 1

Prove: $\overline{BC} \cong \overline{BA}$

1. Given: $\overline{BC} \cong \overline{CD}, \overline{AD} \cong \overline{CD},$

AD = 12, AB = 12

EXAMPLE 2 Using Algebra

Solve for the variable using the given information. Explain your steps.

SOLUTION

a. Since the entire segment AC has length 91, the two segments which make up AC must have lengths which add up to 91.

Given
Substitution
Simplify.
Addition property of equality
Division property of equality

b. Because $\overline{DF} \cong \overline{EF}$ and $\overline{EF} \cong \overline{GF}$, $\overline{DE} \cong \overline{GF}$ by the transitive property of congruence. By definition of congruence DE = GF.

3x - 5 = 7x - 21	Substitution
3x + 16 = 7x	Addition property of equality
16 = 4x	Subtraction property of equality
x = 4	Division property of equality

Chapter 2

35

LESSON 2.5 CONTINUED

Name

Practice with Examples

For use with pages 102–107

Exercises for Example 2

Solve for the variable using the given information.

2. Given: $\overline{EG} \cong \overline{HF}$

36