NAME

Practice with Examples

For use with pages 759-765

VOCABULARY

A sphere is the locus of points in space that are a given distance from a point called the center of the sphere.

A radius of a sphere is a segment from the center to a point on the sphere.

A chord of a sphere is a segment whose endpoints are on the sphere.

A diameter of a sphere is a chord that contains the center.

If a plane that intersects a sphere contains the center of the sphere, the intersection is a great circle of the sphere.

A great circle of a sphere separates the sphere into two congruent halves called hemispheres.

Theorem 12.11 Surface Area of a Sphere The surface area S of a sphere with radius r is $S = 4\pi r^2$.

Theorem 12.12 Volume of a Sphere The volume *V* of a sphere with radius r is $V = \frac{4}{3}\pi r^3$.

EXAMPLE 1 Finding the Surface Area of a Sphere

Find the surface area of the sphere.

SOLUTION

 $S = 4\pi r^2$ $= 4\pi(10)^2$

Substitute.

 $= 400 \pi$ Simplify.

So, the surface area of the sphere is 400π square feet, or about 1256.6 square feet.

Name

Practice with Examples

For use with pages 759–765

Exercises for Example 1

Find the surface area of the sphere.

EXAMPLE 2 Using a Great Circle

The circumference of a great circle of a sphere is 25 inches. Find the surface area of the sphere.

SOLUTION

Begin by finding the radius of the sphere.

$C = 2\pi r$	Formula for circumference of a circle
$25 = 2\pi r$	Substitute.
$4 \approx r$	Divide each side by 2π .

Using a radius of 4 cm, the surface area is $S = 4\pi r^2 = 4\pi (4)^2 = 64\pi \text{ in.}^2$

So, the surface area of the sphere is 64π in.², or about 201.1 in.²

Exercises for Example 2

Find the surface area of the sphere.

236

Date

25 in

.....

Name

Practice with Examples

For use with pages 759–765

3.5 ft

EXAMPLE 3 Finding the Volume of a Sphere

Find the volume of the sphere.

SOLUTION

$$V = \frac{4}{3}\pi r^3$$
 Formula for volume of sphere

 $=\frac{4}{3}\pi(3.5)^3$ Substitute.

 ≈ 179.6 Simplify.

So, the volume of the sphere is about 179.6 cubic feet.

Exercises for Example 3

Find the volume of the sphere.

