10-2 Study Guide and Intervention *The Pythagorean Theorem and Its Converse*

The Pythagorean Theorem In a right triangle, the sum of the squares of the lengths of the legs equals the square of the length of the hypotenuse. If the three whole numbers *a*, *b*, and *c* satisfy the equation $a^2 + b^2 = c^2$, then the numbers *a*, *b*, and *c* form a **Pythagorean triple**.

Example :		b. Find <i>c</i> .	
a. Find <i>a</i> .		B_{20}	
12 12		$a^2 + b^2 = c^2$	Pythagorean Theorem
$a^2 + b^2 = c^2$	Pythagorean Theorem	$20^2 + 30^2 = c^2$	<i>a</i> = 20, <i>b</i> = 30
$a^2 + 12^2 = 132$	<i>b</i> = 12, <i>c</i> = 13	$400 + 900 = c^2$	Simplify.
$a^{2}+144 = 169$	Simplify.	$1300 = c^2$	Add.
$a^2 = 25$	Subtract.	$\sqrt{1300} = c$	Take the positive square root of
a = 5	Take the positive square root of		each side.
	each side.	$36.1 \approx c$	Use a calculator.
Exercises			

Find *x*.

33

5. 16

Use a Pythagorean Triple to find x.

10-2 Study Guide and Intervention (continued) The Pythagorean Theorem and Its Converse

Converse of the Pythagorean Theorem If the sum of the squares of the lengths of the two shorter sides of a triangle equals the square of the lengths of the longest side, then the triangle is a right triangle.

You can also use the lengths of sides to classify a triangle.

if $a^2 + b^2 = c^2$ then $\triangle ABC$ is a right triangle.

if $a^2 + b^2 > c^2$ then $\triangle ABC$ is acute.

if $a^2 + b^2 < c^2$ then $\triangle ABC$ is obtuse.

Example: Determine whether $\triangle PQR$ is a right triangle.

 $a^2 + b^2 \stackrel{?}{=} c^2$ Compare c^2 and $a^2 + b^2$ $10^2 + (10\sqrt{3})^2 \stackrel{?}{=} 20^2$ $a = 10, b = 10\sqrt{3}, c = 20$ $100 + 300 \stackrel{?}{=} 400$ Simplify. $400 = 400\checkmark$ Add.

Since $c^2 = and a^2 + b^2$, the triangle is a right triangle.

Exercises

Determine whether each set of measures can be the measures of the sides of a triangle. If so, classify the triangle as *acute, obtuse,* or *right.* Justify your answer.

DATE

1. 30, 40, 50	2. 20, 30, 40	3. 18, 24, 30
4. 6, 8, 9 5	5. 6, 12, 18	6. 10, 15, 20

7.
$$\sqrt{5}$$
, $\sqrt{12}$, $\sqrt{13}$ **8.** 2, $\sqrt{8}$, $\sqrt{12}$ **9.** 9, 40, 41

If $a^2 + b^2 = c^2$, then

 $\triangle ABC$ is a right triangle.

