HONORS CHEMISTRY

Brain Teaser

- ☐ Place Textbook Notes on your desk
- Questions on Lab Report???
- □ Ch 2.1-2.5 Open Note Quizlet
 - ☐Time: 10 minutes

Agenda

- ☐ Brain Teaser: Ch 2.1-2.5 Quizlet
- ■Numbers Notes:
 - Qualitative versus Quantitative
 - Accuracy versus Precision
 - ■Significant Figures
- Homework
 - Reading and Notes Ch 2.6-2.8
 - Quizlet (over assigned reading tomorrow)

Data Terms

QuantitativeMeasurements

Give results in a definite form, usually values

Examples

24L, 10 cm, 14 °C

Data Terms

QualitativeMeasurements

Give results in a descriptive, non-numeric form.

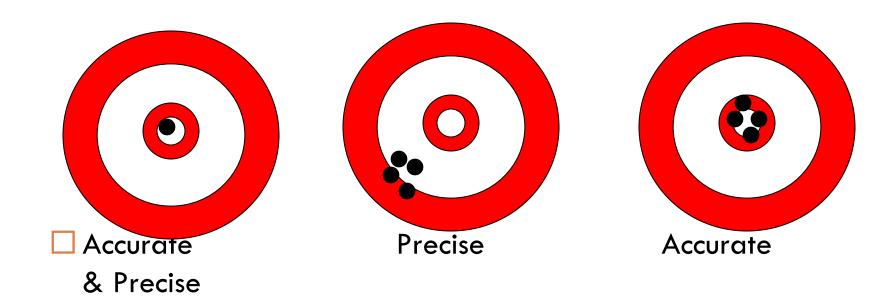
Examples

The beaker was warm.

The density was greater than that of water.

What's the difference between accuracy and precision?

Data Terms


How close a measurement comes Accuracy to the actual value of whatever is being measured Water freezes at 0° C, and boils at 100° C. How close is Examples the measurement to the values.

Data Terms

Accuracy vs. Precision

☐ Target Practice

Percent error

 $\frac{\text{Theoretical} - \text{Experimental}}{\text{Theoretical}} \quad \text{x } 100 = \% \text{ error}$

Closure

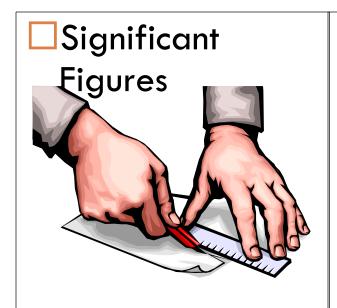
Give an example of a qualitative and quantitative measurement.

Units of measurement

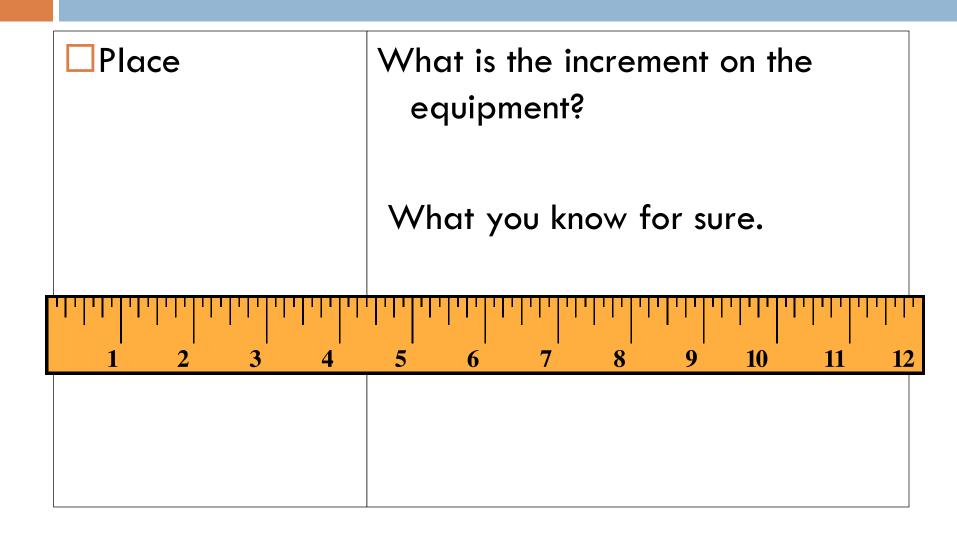
SI Units (Le Systéme Internationale)

©Scientists need to report data that can be reproduced by other scientists. They need standard units of measurement.

Base Units


- A base unit is a defined unit in a system of measurement
- •There are seven base units in SI.

Refer to the handout on SI Units

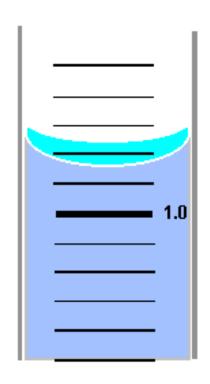

Base Units

SI Base Units			
Quantity	Base Unit		
Time	second (s)		
Length	meter (s)		
Mass	kilogram (kg)		
Temperature	Kelvin (K)		
Amount of a substance	mol (mol)		
Electric current	ampere (A)		
Luminous intensity	candela (cd)		

Prefixes Used with SI Units					
Prefix	Symbol	Factor	Scientific notation	Example	
giga	G	1 000 000 000	10°	gigameter (Gm)	
mega	M	1 000 000	106	megegram (Mg)	
kilo	k	1000	10^{3}	kilometer (km)	
deci	d	1/10	10-1	deciliter (dL)	
centi	с	1/100	10-2	centimeter (cm)	
milli	m	1/1000	10-3	milligram (mg)	
micro	μ	1/1 000 000	10-6	microgram (μg)	
nano	n	1/1 000 000 000	10-9	nanometer (nm)	
pico	p	1/1 000 000 000 000	10-12	picometer (pm)	

Digits in a measurement that have meaning relative to the equipment being used

□Digits with meaning


Digits that can be known precisely plus a last digit that must be estimated.

Examples

Refer to Examples on the board:

- 1.
- 2.
- 3.
- 4

Uncertainty in Measurements

1.14 mL? 1.15 mL? 1.16 mL?

1.15 ± 0.01 mL

uncertain digit (1/10 the smallest scale division)

Scale Reading and Uncertainty

- Uncertainty: Limit of precision of the reading (based on ability to guess the final digit).
 - Existed in measured quantities versus counted quantities
 - Refer to Example (2 rulers)

Significant Figures: Mini Lab

Triple beam balance **Equipment to Evaluate** Analytical balance □ To what place (tenths, **Thermometer** hundredths, etc.) can these measurement instruments Graduated cylinders accurately measure? What Beakers place is the estimation? Ruler Burette

□What do you notice? Depends on type of equipment being used.

Depends on size of equipment used.

- Raw Data Rules
 - How do you know how many sig figs?
- 1. All digits 1-9 are significant.
- 2. Zeros between significant digits are always significant.
- 3. Trailing 0's are significant only if the number contains a decimal point
- 4. Zeros in the beginning of a number with a decimal point are not significant.
- 5. Zeros following a significant number with a decimal are significant.

□ Pacific to
Atlantic Rule

Examples

Pacific = Decimal Present

Start from the Pacific (left hand side), every digit beginning with the first 1-9 integer is significant

20.0 = 3 sig digits0.00320400 = 6 sig digits

1000. = 4 sig digits

☐Atlantic Rule to Pacific

Examples

Atlantic = Decimal Absent

Start from the Atlantic (right hand side), every digit beginning with the first 1-9 integer is significant

100020 = 5 sig digits1000 = 1 sig digits

Practice

- How many significant figures are in
- 1. 400.0
- 2. 4000
- 3. 4004
- 4. 0.004

Rally Rows

How many significant figures are in

- 1. 0.02
- 2. 0.020
- 3. 501
- 4. 501.0
- *5*. 5000
- 6. 5000.
- 7. 5050
- 8. 01.0050
- 9. 50300
- 10. 5.0300

Summary

Things to consider

- ☐ What do significant figures tell you about the measurement equipment?
- ☐ If you wanted to measure the mass of a whale, what scale would you want to use? Would it matter if you know its mass accurately to 1 gram?
- ☐ If you wanted to measure the mass a grain of sand, what scale would you want to use? Would it matter if you know its mass accurately to 1 gram?

Instrument Measure

- □Need to make sure you are measuring and recording to the correct number of digits
 - Measure what you know for sure and then guess one more digit
- Rulers
 - Draw a line on your paper and measure it to the correct number of digits
- ☐Beaker vs. graduated cylinder
- Electronic balance vs. triple beam balance